2025/11/02 23:46 1/4 DosExit

This call is issued when a thread completes executing. The current thread or process ends.

Syntax

DosExit (ActionCode, ResultCode)

Parameters

e ActionCode (USHORT) - input : Terminates the process and all its threads.

Value|Definition
0 The current thread ends.
1 All threads in the process end.

e ResultCode (USHORT) - input : Program's completion code. It is passed to any thread that issues
DosCwait for this process.

Remarks

DosExit allows a thread to terminate itself or be terminated by another thread in its process. If
ActionCode=0 and the specified thread is the last thread executing in the process, or if
ActionCode=1, the process terminates.

The system can start threads on behalf of an application. Thus, if the intent of a DosExit call is to
terminate the process, ActionCode=1 should be specified to terminate all the threads belonging to
the process.

Do not terminate thread 1 without terminating the process. Thread 1 is the initial thread of execution,
not a thread started by a DosCreateThread request. When thread 1 ends, any monitors or signal
processing routines set for this process also end. To avoid unpredictable results, DosExit should be
specified with ActionCode=1 to ensure the process ends.

When a process is terminating, all but one thread is terminated and that thread executes routines
whose addresses have been specified with DosExitList. After resources have been cleaned up by the
exit list routines, this thread and all other resources owned by the process are released.

Family API Considerations

Some options operate differently in the DOS mode than in the 0S/2 mode. Therefore, the following
restrictions apply to DosExit when coding for the DOS mode:

e There is no thread support in DOS 3.3; therefore DosExit exits the currently executing program.
« If ActionCode = 0 this option is ignored. It is equivalent to an ActionCode = 1.

Example Code

osFree wiki - http://www.osfree.org/doku/

Last update: 2018/08/26 08:33 en:docs:fapi:dosexit http://www.osfree.org/doku/doku.php?id=en:docs:fapi:dosexit&rev=1535272406

C Binding

#define INCL DOSPROCESS

VOID DosExit(ActionCode, ResultCode);

USHORT ActionCode; /* Indicates end thread or process */
USHORT ResultCode; /* Result Code to save for DosCwait */

In this example, the main routine starts up another program, simple.exe, and then expects a return
code of 3 to be returned. Simple.exe sets the return code with DosExit.

#define INCL DOSPROCESS

#define START PROGRAM "simple.exe"
#define RETURN OK 3

CHAR LoadError[100];

PSZ Args;

PSZ Envs;

RESULTCODES ReturnCodes;

USHORT rc;

if(!DosExecPgm(LoadError, /* Object name buffer */
sizeof(LoadError), /* Length of object name buffer

*/
EXEC _SYNC, /* Asynchronous/Trace flags */
Args, /* Argument string */
Envs, /* Environment string */
&ReturnCodes, /* Termination codes */
START PROGRAM)) /* Program file name */

if (ReturnCodes.codeResult == RETURN OK) /* Check result code */
printf("things are ok..");

else
printf("something is wrong...");

#define INCL DOSPROCESS

#define RETURN CODE 3

main()
{
printf("Hello!\n");
DosExit (EXIT THREAD, /* End thread/process */
RETURN CODE) ; /* Result code */
}

The following example shows how to suspend and resume execution of a thread within a process. The
main thread creates Thread2 and allows it to begin executing. Thread?2 iterates through a loop that

http://www.osfree.org/doku/ Printed on 2025/11/02 23:46

2025/11/02 23:46 3/4 DosExit

prints a line and then sleeps, relinquishing its time slice to the main thread. After one iteration by
Thread2, the main thread suspends Thread2 and then resumes it. Subsequently, Thread2 completes
the remaining three iterations.

#define INCL DOSPROCESS
#include <o0s2.h>

#define SEGSIZE 4000 /* Number of bytes requested in segment */
#define ALLOCFLAGS 0 /* Segment allocation flags - no sharing */
#define SLEEPSHORT 5L /* Sleep interval - 5 milliseconds */
#define SLEEPLONG 75L /* Sleep interval - 75 milliseconds */
#define RETURN CODE 0 /* Return code for DosExit() */

VOID APIENTRY Thread2()

{

USHORT i;

/* Loop with four iterations */
for(i=1; i<5; i++)

{
printf("In Thread2, i is now %d\n", 1i);
/* Sleep to relinquish time slice to main thread */
DosSleep (SLEEPSHORT) ; /* Sleep interval */
}
DosExit (EXIT THREAD, /* Action code - end a thread */
RETURN CODE); /* Return code */
}
main()
{
TID ThreadID; /* Thread identification */
SEL ThreadStackSel; /* Segment selector for thread stack */
PBYTE StackEnd; /* Ptr. to end of thread stack */
USHORT rc;

/** Allocate segment for thread stack; make pointer to end of stack. **/
/** We must allocate a segment in order to preserve segment **/
/** protection for the thread. **/

rc = DosAllocSeg(SEGSIZE, /* Number of bytes requested */
&ThreadStackSel, /* Segment selector (returned) */
ALLOCFLAGS) ; /* Allocation flags - no sharing */

StackEnd = MAKEP(ThreadStackSel, SEGSIZE-1);

/** Start Thread2 **/
if(!(rc=DosCreateThread((PFNTHREAD) Thread2, /* Thread address */
&ThreadlID, /* Thread ID (returned) */
StackEnd))) /* End of thread stack */
printf("Thread2 created.\n");

osFree wiki - http://www.osfree.org/doku/

Last update: 2018/08/26 08:33 en:docs:fapi:dosexit http://www.osfree.org/doku/doku.php?id=en:docs:fapi:dosexit&rev=1535272406

/* Sleep to relinquish time slice to Thread2 */
if(!(DosSleep(SLEEPSHORT))) /* Sleep interval */
printf("Slept a little to let Thread2 execute.\n");

/¥*¥*¥**x Suspend Thread2, do some work, then resume Thread2 ****x/

if(!(rc=DosSuspendThread(ThreadID))) /* Thread ID */
printf("Thread2 SUSPENDED.\n");

printf("Perform work that will not be interrupted by Thread2.\n");

if(!(rc=DosResumeThread(ThreadID))) /* Thread ID */
printf("Thread2 RESUMED.\n");

printf("Now we may be interrupted by Thread2.\n");

/* Sleep to allow Thread2 to complete */
DosSleep (SLEEPLONG) ; /* Sleep interval */

MASM Binding

EXTRN DosExit:FAR

INCL DOSPROCESS EQU 1
PUSH WORD ActionCode ;Indicates end thread or process
PUSH WORD ResultCode ;Result Code to save for DosCwait

CALL DosExit

Note

This text based on http://www.edm2.com/index.php/DosExit_(FAPI)

From:
http://www.osfree.org/doku/ - osFree wiki

Permanent link:

Last update: 2018/08/26 08:33

http://www.osfree.org/doku/ Printed on 2025/11/02 23:46

http://www.edm2.com/index.php/DosExit_
http://www.osfree.org/doku/
http://www.osfree.org/doku/doku.php?id=en:docs:fapi:dosexit&rev=1535272406

	[Syntax]
	[Syntax]
	[Syntax]
	[Syntax]
	Syntax
	Parameters
	Remarks

	Family API Considerations
	Example Code

	C Binding
	MASM Binding
	Note

