
IBM OS/2 16/32-BIT OBJECT MODULE
FORMAT (OMF) AND LINEAR

EXECUTABLE MODULE FORMAT (LX)

Revision 10

October 9, 1996 2:33 pm

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

ii Revision 10

THE INFORMATION FURNISHED HEREIN IS ON AN “AS-IS” BASIS, AND IBM MAKES
NO WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL IBM BE LIABLE FOR ANY DAMAGES
ARISING FROM THE USE OF THE INFORMATION CONTAINED HEREIN, INCLUDING
INFRINGEMENT OF ANY PROPRIETARY RIGHTS, OR FOR ANY LOST PROFITS OR
OTHER INCIDENTAL AND/OR CONSEQUENTIAL DAMAGES, EVEN IF IBM HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

FURTHERMORE, THIS DOCUMENTATION IS IN A PRELIMINARY FORM; IS NOT
COMPLETE; HAS NOT YET BEEN TESTED, VALIDATED OR REVIEWED; MAY CONTAIN
ERRORS, OMISSIONS, INACCURACIES OR THE LIKE; AND IS SUBJECT TO BEING
CHANGED, REVISED OR SUPERSEDED IN WHOLE OR IN PART BY IBM. IBM DOES
NOT ASSUME ANY RESPONSIBILITY TO NOTIFY ANY PARTIES, COMPANIES, USERS,
AND OR OTHERS OF DEFECTS, DEFICIENCIES, CHANGES, ERRORS OR OTHER
FAILINGS OR SHORTCOMING OF THE DOCUMENTATION.

THIS DOCUMENT IS BEING FURNISHED BY IBM FOR EVALUATION/DEVELOPMENT
FEEDBACK PURPOSES ONLY AND IBM DOES NOT GUARANTEE THAT IBM WILL
MAKE THIS DOCUMENT GENERALLY AVAILABLE. RECIPIENT'S USE OF THIS
DOCUMENT IS LIMITED TO RECIPIENT'S PERSONAL USE FOR THE SOLE PURPOSE
OF CREATING TOOLS FOR THE OS/2 OPERATING SYSTEM.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM
Corporation, Purchase, NY, 10577.

The following copyright notice protects this document under the Copyright laws of the United
States and other countries which prohibits such actions as, but not limited to, copying,
distributing, modifying, and making derivative works.

© Copyright International Business Machines Corporation, 1991-1996.
All Rights Reserved.

Notice to US Government Users - Documentation related to restricted rights - Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract
with IBM Corp.

The following terms are trademarks of International Business Machines Corporation in the
United States and/or other countries:

IBM
Operating System/2
OS/2

Revision 10 iii

Contents

1 Introduction .. 1
1.1 Revision Control... 2

2 The 16/32-Bit Object Module Format .. 3
2.1 Record Format ... 4
2.2 Frequent Object Record Subfields ... 5
2.2.1 Names ... 5
2.2.2 Indexed References .. 5
2.2.3 Numeric 2 and 4 byte fields .. 6
2.3 Order of records... 7
2.4 Object Record Types ... 9
2.4.1 80H THEADR Translator Header Record ... 9
2.4.2 82H LHEADR Library Header Record .. 9
2.4.3 88H COMENT Comment Record .. 10
2.4.4 88H IMPDEF Import Definition Record (comment class A0, subtype 01) 13
2.4.5 88H EXPDEF Export Definition Record (comment class A0, subtype 02) 14
2.4.6 88H INCDEF Incremental Compilation Record (comment class A0, subtype 03)
16
2.4.7 88H LNKDIR C++ Directives Record (comment class A0, subtype 05) 16
2.4.8 88H LIBMOD Library Module Name Record (comment class A3) 17
2.4.9 88H EXESTR Executable String Record (comment class A4) 18
2.4.10 88H INCERR Incremental Compilation Error Record(comment class A6) 18
2.4.11 88H NOPAD No Segment Padding Record (comment class A7) 19
2.4.12 88H WKEXT Weak Extern Record (comment class A8) 19
2.4.13 88H LZEXT Lazy Extern Record (comment class A9) 21
2.4.14 88H IDMDLL Identifier Manipulator DLL Record (comment class AF) 21
2.4.15 88H PharLap Format Record (comment class AA) ... 23
2.4.16 8AH or 8BH MODEND Module End Record ... 24
2.4.17 8CH EXTDEF External Names Definition Record .. 26
2.4.18 90H or 91H PUBDEF Public Names Definition Record 27
2.4.19 94H or 95H LINNUM Line Number Record ... 28
2.4.20 96H LNAMES List of Names Record .. 29
2.4.21 98H or 99H SEGDEF Segment Definition Record .. 29
2.4.22 9AH GRPDEF Group Definition Record ... 32
2.4.23 9CH or 9DH FIXUPP Fixup Record .. 34
2.4.24 A0H or A1H LEDATA Logical Enumerated Data Record 39
2.4.25 A2H or A3H LIDATA Logical Iterated Data Record .. 40
2.4.26 B0H COMDEF Communal Names Definition Record 41
2.4.27 B2H or B3H BAKPAT Backpatch Record ... 43
2.4.28 B4H or B5H LEXTDEF Local External Names Definition Record 44
2.4.29 B6H or B7H LPUBDEF Local Public Names Definition Record 44
2.4.30 B8H LCOMDEF Local Communal Names Definition Record 45
2.4.31 C2H or C3H COMDAT Initialized Communal Data Record 45
2.4.32 C4H or C5H LINSYM Symbol Line Numbers Record 48
2.4.33 C6H ALIAS Alias Definition Record .. 49
2.4.34 C8H or C9H NBKPAT Named Backpatch Record .. 50

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

iv Revision 10

3 LX - Linear eXecutable Module Format Description ..53
3.1 32-bit Linear EXE Header... 54
3.2 LX Header .. 57
3.3 Program (EXE) startup registers and Library entry registers.................................. 64
3.4 Object Table ... 66
3.5 Object Page Table.. 68
3.6 Resource Table .. 70
3.7 Resident or Non-resident Name Table Entry.. 72
3.8 Entry Table ... 73
3.8.1 16-bit Entry ..74
3.8.2 286 Call Gate Entry ...74
3.8.3 32-bit Entry ..75
3.8.4 Forwarder Entry ...76
3.9 Module Format Directives Table... 77
3.10 Verify Record Directive Table... 78
3.11 Per-Page Checksum .. 79
3.12 Fixup Page Table ... 80
3.13 Fixup Record Table .. 81
3.13.1 Internal Fixup Record ..83
3.13.2 Import by Ordinal Fixup Record ..84
3.13.3 Import by Name Fixup Record ..85
3.13.4 Internal Entry Table Fixup Record ...85
3.13.5 Internal Chaining Fixups ..86
3.14 Import Module Name Table .. 88
3.15 Import Procedure Name Table ... 89
3.16 Preload Pages .. 90
3.17 Demand Load Pages.. 91
3.18 Iterated Data Pages.. 92
3.19 Debug Information .. 93

Revision 10 v

Figures

Figure 2-1: Standard object module record format .. 4
Figure 2-2: THEADR Translator Header Record ... 9
Figure 2-3: LHEADR Library Header Record... 9
Figure 2-4: COMENT Comment Record .. 10
Figure 2-5: IMPDEF Import Definition Record ... 14
Figure 2-6: EXPDEF Export Definition Record .. 15
Figure 2-7: INCDEF Incremental Compilation Record ... 16
Figure 2-8: LNKDIR C++ Directives Record .. 16
Figure 2-9: LNKDIR Library Module Name Record.. 17
Figure 2-10: EXESTR Executable String Record... 18
Figure 2-11: INCERR Incremental Compilation Error Record.. 19
Figure 2-12: NOPAD No Segment Padding Record .. 19
Figure 2-13: WKEXT Weak Extern Record.. 19
Figure 2-14: LZEXT Lazy Extern Record ... 21
Figure 2-15: IDMDLL Identifier Manipulator DLL Record... 22
Figure 2-16: PharLap Format Record .. 23
Figure 2-17: MODEND Module End Record .. 25
Figure 2-18: EXTDEF External Names Definition Record ... 26
Figure 2-19: PUBDEF Public Names Definition Record .. 27
Figure 2-20: LINNUM Line Number Record... 28
Figure 2-21: LNAMES List of Names Record .. 29
Figure 2-22: SEGDEF Segment Definition Record .. 30
Figure 2-23: GRPDEF Group Definition Record .. 33
Figure 2-24: FIXUPP Fixup Record ... 34
Figure 2-25: LEDATA Logical Enumerated Data Record... 39
Figure 2-26: LIDATA Logical Iterated Data Record ... 40
Figure 2-27: COMDEF Communal Names Definition Record.. 42
Figure 2-28: BAKPAT Backpatch Record .. 43
Figure 2-29: LEXTDEF Local External Names Definition Record.................................... 44
Figure 2-30: LPUBDEF Local Public Names Definition Record....................................... 45
Figure 2-31: LCOMDEF Local Communal Names Definition Record 45
Figure 2-32: COMDAT Initialized Communal Data Record.. 46
Figure 2-33: LINSYM Symbol Line Numbers Record .. 49
Figure 2-34: ALIAS Alias Definition Record ... 50
Figure 2-35: NBKPAT Named Backpatch Record ... 51
Figure 3-1: DOS 2.0 Section (Discarded) .. 54
Figure 3-2: Linear Executable Module Header (Resident)... 54
Figure 3-3: Loader Section (Resident) ... 55
Figure 3-4: Fixup Section (Resident) ... 55
Figure 3-5: Data Section (Non-Resident)... 55
Figure 3-6: Debug Section (Not used by the Loader) .. 55
Figure 3-7: 32-bit Linear EXE Header.. 57
Figure 3-8: Object Table .. 66
Figure 3-9: Object Page Table Entry.. 68
Figure 3-10: Resource Table ... 70
Figure 3-11: Resident or Non-resident Name Table Entry... 72
Figure 3-12: Entry Table .. 73

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

vi Revision 10

Figure 3-13: Module Format Directive Table .. 77
Figure 3-14: Verify Record Table ... 78
Figure 3-15: Per-Page Checksum .. 79
Figure 3-16: Fixup Page Table ... 80
Figure 3-17: Fixup Record Table.. 81
Figure 3-18: Internal Fixup Record... 83
Figure 3-19: Import by Ordinal Fixup Record ... 84
Figure 3-20: Import by Name Fixup Record ... 85
Figure 3-21: Internal Entry Table Fixup Record ... 85
Figure 3-22: Internal Chaining Fixup Source Location ... 86
Figure 3-23: Internal Chaining Fixup Pseudocode ... 87
Figure 3-24: Import Module Name Table.. 88
Figure 3-25: Import Procedure Name Table... 89
Figure 3-26: Object Iterated Data Record (Iteration Record) ... 92
Figure 3-27: Debug Information.. 93

Revision 10 1

Introduction

1 Introduction

This document is intended to describe the interface that is used by language translators and
generators as their intermediate output to the linker for the 32-bit OS/2 operating system.
The linker will generate the executable module that is used by the loader to invoke the .EXE
and .DLL programs at execution time.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

2 Revision 10

1.1 Revision Control

This material was compiled from a variety of sources and was edited by BJ Hargrave, IBM
Personal Software Products. Comments can by sent to hargrave@austin.ibm.com.

All changes from the previous draft are marked with revision bars.

1. Revision 10 (October 9, 1996 2:33 pm)

This is the first Release of this document formatted by FrameMaker.

Added new Internal Chaining Fixup type for Warp 4. See § 3.13, “Fixup Record Table”
and § 3.13.5, “Internal Chaining Fixups”.

The LX module flags 00000001h, 00000002h and 00010000h, in § 3.2, “LX Header”,
have been changed to be marked as reserved for system use. These flags were
previously incorrectly documented as being used.

Revision 10 3

The 16/32-Bit Object Module Format

2 The 16/32-Bit Object Module Format

This chapter describes the IBM 16/32-bit Object Module Format, also known as the IBM-
OMF format. Also see Tool Interface Standards Portable Formats Specification, Tool
Interface Standards Committee (Version 1.0), Section III for detail of the TIS-OMF format.
Both OMF specifications are virtually identical but the TIS specification is the most current
and is the specification used by most modern compilers for OS/2 such as IBM VisualAge
C++ for OS/2.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

4 Revision 10

2.1 Record Format

All object records confirm to the following format:

The Record Type field is a 1-byte field containing the hexadecimal number that identifies the
type of object record. The format is determined by the least significant bit of the Record Type
field. Note that this does not govern Use32/Use16 segment attributes; it simply specifies the
size of certain numeric fields within the record. An odd Record Type indicates that 32-bit
values are present. An even Record Type indicates that those fields contain16-bit values.
The fields affected are described with each record.

:An entire record occupies Record Length + 3 bytes. The record length does not include the
count for the record type and record length fields. Unless otherwise noted within the record
definition, the record length should not exceed 1024 bytes.

The Record Contents are determined by the record type.

The Chk Sum field is a 1-byte field that contains the negative sum (modulo 256) of all other
bytes in the record. The byte sum over the entire record, ignoring overflow, is zero.

Note: LINK386 ignores the value of the Chk Sum byte.

Figure 2-1: Standard object module record format

1 Byte 2 Bytes <variable length> 1 byte

Record Type Record Length Record Contents Chk Sum or 0

< - - - - - - - - - - record length in bytes - - - - - - - - - - >

Revision 10 5

The 16/32-Bit Object Module Format

2.2 Frequent Object Record Subfields

The contents of each record are determined by the record type, but certain subfields appear
frequently; the format of such fields is described next.

2.2.1 Names

Name strings are encoded as an 8-bit unsigned count followed by a string of “count”
characters. The character set is usually some ASCII subset. A null name is specified by a
single byte of 0 (indicating a string of length zero).

2.2.2 Indexed References

Certain items are ordered by occurrence, and referenced by index (starting index is 1). Index
fields can contain 0, indicating not-present, or values from 1 through 7FFF. The index is
encoded as 1 or 2 bytes.

If the index number is in the range 0-7H, the high-order bit (bit 7) is 0 and the low-order bits
contain the index number, so the field is only 1 byte long. If the index number is in the range
80-7FFFH, the field is 2 bytes long. The high-order bit of the first byte in the field is set to 1,
and the high-order byte of the index number which must be in the range (0-7FH) fits in the
remaining 7 bits. The low-order byte of the index number is specified in the second byte of
the field. A 16-bit value is obtained as follows:

if (first_byte & 0x80)
 index_word = (first_byte & 7F) * 0x100 + second_byte;
else
 index_word = first_byte

2.2.2.1 Type indices

The type index is treated as an index field when a record is parsed (occupies one or two
bytes, occurs in PUBDEF, COMDEF, EXTDEF records). They are encoded as described
under indexed references.

Note: At present, no type checking is done by the linker. If any link-time semantics are
defined, that information will be recorded somewhere within this document.

2.2.2.2 Ordered Collections

Certain records and record groups are ordered; the ordering is obtained from the order of the
record types within the file together with the ordering of repeated fields within these records.
Such ordered collections are referenced by index, counting from 1 (index 0 indicates
unknown or decline-to-state).

For example, there may be many LNAMES records within a module and each of those
records may contain many names. The names are indexed starting at 1 for the first name in
the first LNAMES record encountered while reading the file, 2 for the second name in the first
record, etc., and the highest index for the last name in the last LNAMES record encountered.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

6 Revision 10

The ordered collections are:

• NAMES: ordered by LNAMES record and names within each. Referenced as a Name
Index.

• LOGICAL SEGMENTS: ordered by SEGDEF records in file. Referenced as a Segment
Index.

• GROUPS: ordered by GRPDEF of records in file. Referenced as a Group Index.

• EXTERNAL SYMBOLS: ordered by EXTDEF and COMDEF records and symbols within
each. Referenced as an External Index (in FIXUPPs).

2.2.3 Numeric 2 and 4 byte fields

Words and double words (16 and 32 bit quantities) are stored in Intel byte order (lowest
address is least significant).

Certain records, notably SEGDEF, PUBDEF, LINNUM, LEDATA, LIDATA, FIXUPP and
MODEND, contain size, offset, and displacement values which may be 32 bit quantities for
Use32 segments. The encoding is as follows.

• When the least significant bit of the record type byte is set (i.e. record type is an odd
number), the numeric fields are 4 bytes.

• When the least significant bit of the record type byte is clear, the fields occupy 2 bytes
(16 bit Object Module Format). The values are zero-extended when applied to Use32
segments.

See § 2.4.21, “98H or 99H SEGDEF Segment Definition Record”, on page 29 for an
explanation of Use16/Use32 segments.

Revision 10 7

The 16/32-Bit Object Module Format

2.3 Order of records

The record order is chosen so that bind/link passes through an object module are minimized.
This differs from the previous less specific ordering in that all symbolic information (in
particular, all export and public symbols) must occur at the start of the object module. This
order is recommended but not mandatory.

Identifier record(s):

Must be the first record.

• THEADR or LHEADR

Records processed by Link Pass one:

May occur in any order but must precede the Link pass separator if it is present.

• COMENT class AF providing name of Identifier Manipulator Dynamic Link Library
(should be near the beginning of the file)

• COMENT identifying object format and extensions

• COMENT any, other than link pass separator comment

• LNAMES providing ordered name list

• SEGDEF providing ordered list of program segments

• GRPDEF providing ordered list of logical segments

• TYPDEF (no longer used)

• ALIAS records

• PUBDEF locating and naming public symbols

• LPUBDEF locating and naming private symbols.

• COMDEF, EXTDEF, LCOMDEF, LEXTDEF records

This group of records is indexed together, so External Index fields in FIXUPP records
may refer to any of the record types listed.

• COMDAT records

Link pass separator (optional):

• COMENT class A2 indicating that pass 1 of the linker is complete.

When this record is encountered, LINK immediately starts Pass 2; no records after this
comment are read in Pass 1. All the above listed records must come before this
comment record. For greater linking speed, all LIDATA, LEDATA, FIXUPP and LINNUM
records should come after the A2 comment record, but this is not required.

In LINK, Pass 2 begins again at the start of the object module, so LIDATA records, etc.,
are processed in Pass 2 no matter where they are placed in the object module.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

8 Revision 10

Records ignored by link pass one and processed by link pass two:

May come before or after link pass two:

• LIDATA or LEDATA records followed by applicable FIXUPP records.

• FIXUPPs containing THREADs only.

• BAKPAT and NBAKPAT records.

• LINNUM and LINSYM providing line number to program code or data association.

Terminator record:

• MODEND indicating end of module with optional start address.

Revision 10 9

The 16/32-Bit Object Module Format

2.4 Object Record Types

2.4.1 80H THEADR Translator Header Record

2.4.1.1 Description:

The THEADR record contains the name of the object module. This name identifies an object
module within an object library or in messages produced by the linker.

The String Length byte gives the number of characters in the name string; the name string
itself is ASCII. This name is usually that of the source program (if supplied by the language
translator), or may be specified directly by the programmer (e.g. TITLE pseudo-op).

This record must occur as the first object record. More than one header record is allowed (as
a result of an object bind, or if source arose from multiple files as a result of include
processing).

Note: The name string is always present; a null name is allowed but not recommended
(not much information for a debugger that way).

It is recommended that the module be generated with the full path and filename
containing the source code.

The THEADR record must be the first record of the object module.

More than one header record is allowed (as a result of source from multiple files
during the include process).

2.4.2 82H LHEADR Library Header Record

2.4.2.1 Description:

This record is very similar to the THEADR record. It is used to indicate the name of a module
within a library file (which has a different organization internally than an object module).

2.4.2.2 Record format:

Note: In LINK, THEADR and LHEADR records are handled identically.

Figure 2-2: THEADR Translator Header Record

1 Byte 2 Bytes 1 Byte <variable length> 1 byte

80
Record
Length

String
Length

Name String
Chk

Sum or 0

Figure 2-3: LHEADR Library Header Record

1 Byte 2 Bytes 1 Byte <variable length> 1 byte

82
Record
Length

String
Length

Name String
Chk

Sum or 0

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

10 Revision 10

2.4.3 88H COMENT Comment Record

2.4.3.1 Description:

The COMENT record contains a character string that may represent a plain text comment, a
symbol meaningful to a program such as LINK or LIB, or some binary coded information that
alters the linking process. The comment records are actually a group of items, classified by
“comment class”.

2.4.3.2 Comment Type

The comment type byte is bit-significant; layout is:

where

2.4.3.3 Comment class and commentary byte string

The comment class is an 8-bit numeric which conveys information by its value (accompanied
by a null byte string), or indicates the information to be found in the accompanying byte
string. The byte string’s length is determined from the record length, not by an initial count
byte.

The values in use currently are the following:

0 Translator

For translator; may name the source language or translator. Recommended: translator
name and version plus optimization level used for compilation be recorded here. Other
compiler or assembler options can be included, although current practice seems to be to
place these under comment class 9D.

01 Intel copyright

Ignored by the linker.

02 through 9B Intel reserved

Figure 2-4: COMENT Comment Record

1 Byte 2 Bytes 1 Byte 1 Byte <Record length - 3> 1 byte

88
Record
Length

Comment
Type

Comment
Class

Commentary byte string
(optional)

Chk
Sum or 0

< -1 byte - >

NP NL 0 0 0 0 0 0

NP is set if the comment is to be preserved by object bind utilities

NL is set if the comment is not for display by object bind utilities

Revision 10 11

The 16/32-Bit Object Module Format

The values from 9C through FF are ignored by Intel products.

9C MS-DOS version -- obsolete

Ignored by linker

9D Memory Model -- ignored

Ignored by linker

9E DOSSEG

Sets the linkers DOSSEG switch. The byte string is null. This record is included in the
startup module in each language library. It directs the linker to use the standardized
segment ordering, according to the naming conventions documented with DOS, OS/2
and accompanying language products.

9F Library indicator

The byte string contains a library file name (without a lead count byte and without an
extension). Can be over-ridden via NOD link switch.

A0 OMF extensions

This class consists of a set of records, identified by subtype (first byte of commentary
string). Values supported by the OS/2 2.0 linker are

01 IMPDEF Import definition record. See § 2.4.4, “88H IMPDEF
Import Definition Record (comment class A0, subtype
01)”, on page 13 for a complete description.

02 EXPDEF Export definition record. See § 2.4.5, “88H EXPDEF
Export Definition Record (comment class A0, subtype
02)”, on page 14 for a complete description.

03 INCDEF Incremental compilation record. See § 2.4.6, “88H
INCDEF Incremental Compilation Record (comment
class A0, subtype 03)”, on page 16 for a complete
description.

04 Protected
Memory Library

Relevant to 32 bit DLL’s.This comment record is inserted
in the object module by the compiler when it encounters
a compiler option or pragma indicating a protected DLL.
The linker then sets a flag in the header of the
executable file (DLL) to indicate that the DLL should be
loaded in such a way that its shared code and data is
protected from corruption.
When the flag is set in the EXE header, the loader loads
the selector of the protected memory area into the DS
while performing run-time fixups (relocations). All other
DLL’s and applications get the regular DGROUP
selector, which doesn’t allow access to the protected
memory area set up by the operating system.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

12 Revision 10

A1 Symbolic debug information

This comment class is now used solely to indicate the version of the symbolic debug
information.

The byte string will be a version number (8-bit numeric) followed by an ASCII character
string indicating the style of symbol and line number (LINNUM) information. Current
values are

A2 Link Pass

This record conveys information to the linker about the organization of the file. At
present, a single sub-extension is defined. The commentary string is

Subclass 01 indicates the start of link pass 2 records; this may be followed by anything
at all, which will be ignored by the linker (determined from the RecLength). When this
comment appears, the linker can rest assured that only LEDATA, LIDATA, FIXUPP,
LINNUM and the terminal MODEND records will occur after this. All other record types,
plus THREAD fixups, occur before.

WARNING: It is assumed that this comment will not be present in a module whose
MODEND record contains a program starting address.

A3 LIBMOD indicator

Library module comment record. Ignored by LINK386.

A4 EXESTR indicator

Executable Module Identification String

A commentary string specifying a string to be placed in the executable module, but
which is not loaded with the load module.

A6 INCERR

Incremental compilation error. See § 2.4.10, “88H INCERR Incremental Compilation
Error Record(comment class A6)”, on page 18 for a complete description.

05 LNKDIR C++ linker directives record. See § 2.4.7, “88H LNKDIR
C++ Directives Record (comment class A0, subtype 05)”,
on page 16 for a complete description.

06-FF Reserved
for Microsoft.

presence of any unrecognized subtype causes LINKER
to generate a fatal error.

n,’C’,’V’ CodeView style

n,’D’,’X’ AIX style

n,’H’,’L’ IBM PM Debugger

01 Optional

Revision 10 13

The 16/32-Bit Object Module Format

A7 NOPAD

No segment padding. Ignored by LINK386.

A8 WKEXT

Weak Extern record. See § 2.4.12, “88H WKEXT Weak Extern Record (comment class
A8)”, on page 19 for a complete description.

A9 LZEXT

Lazy Extern record. Ignored by LINK386.

AA PHARLAP

PharLap Format record. Ignored by LINK386.

AE IPADATA

Interprocedural Analysis Data Record.

This comment record is used by IBM interprocedural analysis and optimization tools to
store and retrieve binary data during the compilation and linking processes. Records of
this type are to be ignored by the linker.

AF IDMDLL indicator

Identifier Manipulator Dynamic Link Library. See § 2.4.14, “88H IDMDLL Identifier
Manipulator DLL Record (comment class AF)”, on page 21 for a complete description

B2H-BFH

Unused

C0H-FFH

Reserved for user-defined comment classes.

Note: A COMENT record can appear almost anywhere in an object module. Only two
restrictions apply:

• A COMENT record cannot be placed between a FIXUPP record and the LEDATA or
LIDATA record to which it refers.

• A COMENT record can not be the first or last record in an object module. (The first
record must always be a THEADR record and the last must always be a MODEND).

2.4.4 88H IMPDEF Import Definition Record (comment class A0, subtype 01)

2.4.4.1 Description:

This record describes the imported names for a module.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

14 Revision 10

2.4.4.2 Record format:

One import symbol is described; the subrecord format is

where:

01

identifies the subtype as an IMPDEF

OrdFlag

is a byte; if zero the import is identified by name. If nonzero, it is identified by ordinal.
Determines the form of the EntryIdent field.

InternalName

in <count, char> string format and is the name used within this module for the import
symbol. This name will occur again in an EXTDEF record.

ModuleName

in <count, char> string format and is the name of the module which supplies an export
symbol matching this import.

EntryIdent

is an ordinal or the name used by the exporting module for the symbol, depending upon
the OrdFlag.

If this field is an ordinal (OrdFlag nonzero), it is a 16-bit word. If this is a name, and the
first byte of the name is zero, then the exported name is the same as the import name (in
the InternalName field). Otherwise, it is the imported name in <count, char> string format
(as exported by ModuleName).

Note: IMPDEF records are created by the utility IMPLIB, which builds an “import library”
from a module definition file or dynamic-link library.

2.4.5 88H EXPDEF Export Definition Record (comment class A0, subtype 02)

2.4.5.1 Description:

This record describes the exported names for a module.

Figure 2-5: IMPDEF Import Definition Record

1 1 <variable> <variable> 2 or <variable> (bytes)

01
Ord
Flag

InternalName ModuleName EntryIdent

Revision 10 15

The 16/32-Bit Object Module Format

2.4.5.2 Record format:

One exported entry point is described; the subrecord format is

where:

02

identifies the subtype as an EXPDEF

ExpFlag

is a bit-significant 8-bit field.

OrdBit

Set if the item is exported by ordinal; in this case the ExportOrdinal field is present.

ResidentName

Set if the exported name is to be kept resident by the system loader; this is an
optimization for frequently used items imported by name.

NoData

Set if the entry point does not use initialized data (either instanced or global).

ParmCount

Number of parameter words. The ParmCount field is set to zero for all but callgates
to 16-bit segments.

Exported Name

in <count, char> string format. Name to be used when the entry point is imported by
name.

Internal Name

in <count, char> string format. If the name length is zero, the internal name is the same
as the Exported Name. Otherwise, it is the name by which the entry point known within
this module. This name will appear as a PUBDEF or LPUBDEF name.

Figure 2-6: EXPDEF Export Definition Record

1 1 <variable> <variable> 2 (bytes)

02 ExpFlag ExportedName InternalName ExportOrdinal

<conditional>

<- 1 byte- >

OrdBit ResidentName NoData ParmCount

1 1 1 < - - - - - - - - - - - - 5 bits - - - - - - - - - - - - >

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

16 Revision 10

ExportOrdinal

present if the OrdBit is set; it is a 16-bit numeric whose value is the ordinal used (must
be non-zero).

Note: EXPDEFs are produced by the compiler when the keyword _export is used in a
source file.

2.4.6 88H INCDEF Incremental Compilation Record (comment class A0, subtype 03)

2.4.6.1 Description:

This record is used for incremental compilation. Every FIXUPP and LINNUM record following
an INCDEF record will adjust all external index values and line number values by the
appropriate delta. The deltas are cumulative if there is more than one INCDEF per module.

2.4.6.2 Record format:

The subrecord format is

The EXTDEF delta and LINNUM delta fields are signed.

Padding (zeros) is added by Quick C to allow for expansion of the object module during
incremental compilation and linking.

Note: Negative deltas are allowed.

2.4.7 88H LNKDIR C++ Directives Record (comment class A0, subtype 05)

2.4.7.1 Description:

This record is used by the compiler to pass directives and flags to the linker.

2.4.7.2 Record format:

The subrecord format is

Figure 2-7: INCDEF Incremental Compilation Record

1 2 2 <variable> (bytes)

03
EXTDEF

delta
LINNUM

delta
padding

Figure 2-8: LNKDIR C++ Directives Record

1 1 1 1 (bytes)

05 Bit Flags Pseudocode Vers CV Vers

Revision 10 17

The 16/32-Bit Object Module Format

The format of the Bit Flags byte is:

The low-order bit, if set, indicates that LINK386 should output the new EXE format; this flag
is ignored for all but linking of Pseudocode applications. (Pseudocode requires a segmented
executable).

The second low-order bit indicates that LINK386 should not output the $PUBLICS subsection
of the CodeView info.

The third low-order bit indicates that MPC (Microsoft Make Pseudocode Utility) should be run.

Pseudocode Version

One byte indicating the Pseudocode interpreter version number.

CodeView Version

One byte indicating the CodeView version number.

Note: The presence of this record in an object module will indicate the presence of global
symbols records. The linker will not emit a Publics section for those modules with
this comment record and a $SYMBOLS section.

2.4.8 88H LIBMOD Library Module Name Record (comment class A3)

2.4.8.1 Description:

The LIBMOD comment record is used only by the LIB utility, not by LINK. It gives the name
of an object module within a library, allowing LIB to preserve the library file name in the
THEADR record and still identify the module names that make up the library. Since the
module names is the basename of the .OBJ file that was built into the library, it may be
completely different from the final library name.

2.4.8.2 Record format:

The subrecord format is

< - 1 byte - >

0 0 0 0 0 Run MPC
Omit CV
Publics

New EXE

1 1 1 1 1 1 1 1

Figure 2-9: LNKDIR Library Module Name Record

1 <variable> (bytes)

A3 Module Name

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

18 Revision 10

The record contains only the ASCII string of the module name, in <count, char> format. The
module name has no path and no extension, just the base of the module name.

Note: LIB adds a LIBMOD record when a .OBJ file is added to a library and strips the
LIBMOD record when a .OBJ file is removed from a library, so typically this record
only exists in .LIB files.

There will be one LIBMOD record in the library file for each object module that was
combined to build the library.

LINK386 ignores LIBMOD coment records.

2.4.9 88H EXESTR Executable String Record (comment class A4)

2.4.9.1 Description:

The EXESTR comment record implements the ANSI and XENIX/UNIX features in C:

• #pragma comment(exestr, <char-sequence>)

• #ident string

2.4.9.2 Record format:

The subrecord format is

The linker will copy the text in the “arbitrary text” field byte for byte to the end of the
executable file. The text will not be included in the program load image.

Note: If CodeView information is present, the text will not be at the end of the file, but
somewhere before so as not to interfere with the Code View signature.

There is no limit to the number of EXESTR comment records.

2.4.10 88H INCERR Incremental Compilation Error Record(comment class A6)

2.4.10.1 Description:

This comment record will cause the linker to terminate with the fatal error saying something
to the effect of “invalid object -- error encountered during incremental compilation”.

The purpose of this is for the case when an incremental compilation fails and the user tries to
manually link. the object module cannot be deleted, in order to preserve the base for the next
incremental compilation.

Figure 2-10: EXESTR Executable String Record

1 <variable> (bytes)

A4 arbitrary text

Revision 10 19

The 16/32-Bit Object Module Format

2.4.10.2 Record format:

The subrecord format is

2.4.11 88H NOPAD No Segment Padding Record (comment class A7)

2.4.11.1 Description:

This comment record identifies a set of segments which are to be excluded from the padding
imposed with the /PADDATA or /PADCODE options.

2.4.11.2 Record format:

The subrecord format is

The SEGDEF Index is the standard OMF index type of 1 or 2 bytes. It may be repeated.

Note: LINK386 ignores NOPAD coment records.

2.4.12 88H WKEXT Weak Extern Record (comment class A8)

2.4.12.1 Description:

This record marks a set of external names as “weak”, and for every weak extern associates
another external name to use as the default resolution.

2.4.12.2 Record format:

The subrecord format is

Figure 2-11: INCERR Incremental Compilation Er ror Record

1 (bytes)

A6 No fields

Figure 2-12: NOPAD No Segment Padding Record

1 1 or 2 (bytes)

A7 SEGDEF Index

Figure 2-13: WKEXT Weak Extern Record

1 1 or 2 1 or 2 (bytes)

A8 Weak EXTDEF Index Default resolution EXTDEF Index

< - - - - - - - - - - - - - - Repeated - >

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

20 Revision 10

The Weak EXTDEF Index field is the 1 or 2 byte index to the EXTDEF of the extern which is
weak.

The Default Resolution EXTDEF Index is the 1 or 2 byte index to the EXTDEF of the extern
that will be used to resolve the extern if no “stronger” link is found to resolve it.

Note: There are two ways to cancel the “weakness” of a weak extern; both result in the
extern becoming a “strong” extern (the same as an EXTDEF). They are:

• if a PUBDEF for the weak extern is linked in,

• if an EXTDEF for the weak extern is found in another module (including libraries).

If the weak extern becomes strong, then it must be resolved with a matching
PUBDEF, just like a regular EXTDEF. If a weak extern has not become strong by the
end of the linking process, then the default resolution is used.

If two weak externs for the same symbol in different modules have differing default
resolutions, LINK386 will emit a warning.

Weak externs do not query libraries for resolution; if an extern is still weak when
libraries are searched, it stays weak and gets the default resolution. However, if a
library module is linked in for other reasons (say, to resolve strong externs) and there
are EXTDEFs for symbols that were weak, the symbols become strong.

For example, suppose there is a weak extern for “foo” with a default resolution name
of “bar”. If there is a PUBDEF for “foo” in some library module which would not
otherwise be linked in, then the library module is not linked in, and any references to
“foo” are resolved to “bar”. However, if the library module is linked in for other
reasons, for example to resolve references to a strong extern named “bletch”, then
“foo” will be resolved by the PUBDEF from the library, not to the default resolution
“bar”.

WKEXTs are best understood by explaining why they were added in the first place.
The minimum BASIC runtime library in the past consisted of a large amount of code
which was always linked in, even for the smallest program. Most of this code was
never called directly by the user, but it was called indirectly from other routines in
other libraries, so it had to be linked in to resolve the external references.

For instance, the floating point library was linked in even if the user’s program did not
use floating point, because the PRINT library routine contained calls to the floating
point library for support to print floating point numbers.

The solution was to make the function calls between the libraries into weak
externals, with the default resolution set to a small stub routine. If the user never
used a language construct or feature that needed the additional library support, then
no strong extern would be generated by the compiler and the default resolution (to
the stub routine) would be used. However, if the user accessed the library’s routines
or used constructs that required the library’s support, a strong extern would be
generated by the compiler to cancel the effect of the weak extern, and the library
module would be linked in. This required that the compiler know a lot about which
libraries are needed for which constructs, but the resulting executable was much
smaller.

Revision 10 21

The 16/32-Bit Object Module Format

2.4.13 88H LZEXT Lazy Extern Record (comment class A9)

2.4.13.1 Description:

This record marks a set of external names as “lazy”, and for every lazy extern associates
another external name to use as the default resolution.

2.4.13.2 Record format:

The subrecord format is

The Lazy EXTDEF Index field is the 1 or 2 byte index to the EXTDEF of the extern which is
weak.

The Default Resolution EXTDEF Index is the 1 or 2 byte index to the EXTDEF of the extern
that will be used to resolve the extern if no “stronger” link is found to resolve it.

Note: There are two ways to cancel the “laziness” of a lazy extern; both result in the extern
becoming a “strong” extern (the same as an EXTDEF). They are:

• if a PUBDEF for the weak extern is linked in,

• if an EXTDEF for the weak extern is found in another module (including libraries).

If a lazy extern becomes strong, then it must be resolved with a matching PUBDEF,
just like a regular EXTDEF. If a lazy extern has not become strong by the end of the
linking process, then the default resolution is used.

If two weak externs for the same symbol in different modules have differing default
resolutions, LINK will emit a warning.

Unlike weak externs, lazy externs do not query libraries for resolution; if an extern is
still lazy when libraries are searched, it stays lazy and gets the default resolution.

LINK386 ignores LZEXT coment records.

2.4.14 88H IDMDLL Identifier Manipulator DLL Record (comment class AF)

2.4.14.1 Description:

This record provides the name and initialization parameters of a DLL that will demangle the
compiler generated mangled names. The linker will use this DLL when displaying error
messages.

Figure 2-14: LZEXT Lazy Extern Record

1 1 or 2 1 or 2 (bytes)

A9 Lazy EXTDEF Index Default resolution EXTDEF Index

< - - - - - - - - - - - - - - Repeated - >

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

22 Revision 10

2.4.14.2 Record format:

The Subrecord Format is:

The Name Length byte gives the number of characters in the DLL Name; the DLL Name
itself is ASCII.

The DLL Name is the name of the Identifier Manipulator Dynamic Link Library provided by
the language. This DLL is used to demangle an internal identifier when that identifier will be
displayed in an error message.

The Parms Length byte gives the number of characters in the Demangle Init Parameters; the
Demangle Init Parameters itself is ASCII.

The Demangle Init Parameters provides information (to the DLL) on how internal identifiers
are mangled.

The linker will not scan forward for an IDMDLL record when an identifier will be displayed.
This record should occur near the beginning of the file.

IDMDLL class COMENT records are processed during pass 1 of the linker.

Note: Because object oriented compilers allow for two functions to have the same name
but different parameters, the compiler uniquely identifies each function by changing
the name of the function. This is known as mangling. An example of this would be:

The user will usually not be aware that the compiler changed the name, so it is
necessary for the linker to demangle the compiler generated name when printing out
linker error messages.

The dynamic link library (DLL) provided by an object oriented language compiler
must contain two 16-bit functions which employ the pascal calling convention:

Figure 2-15: IDMDLL Identifier Manipulator DLL Record

1 1 <Name Length> 1 <Parms Length> (bytes)

AF
Name
Length

DLL Name
Parms
Length

Demangle Init Parameters

User Prototype Compiler Generated Mangled Name

void doit(int, float)
void doit(const char *)

_doit__Fif
_doit__FCPc

INITDEMANGLEID Receive initialization parameters specified in the
IDMDLL COMENT record.

Revision 10 23

The 16/32-Bit Object Module Format

The INITDEMANGLEID and DEMANGLEID entry points may be called more than
once.

All functions must return true (non-zero) if the call is successful and false (zero) if the
call fails. In this manner the linker can ignore whatever is returned in the second
parameter of the DEMANGLEID function if the function returns false. When calling
DEMANGLEID, the linker will pass in the address of a buffer for the second
parameter, and the size of the buffer for the third parameter.

All string parameters must be length-prefixed ASCII strings except for pszPrototype,
parameter 2 for DEMANGLEID (because the length might not fit in a byte). Function
prototypes for these routines look like:

unsigned short pascal far INITDEMANGLEID(char far *
psInitParms);

unsigned short pascal far DEMANGLEID(char far * psMangledName,
char far * pszPrototype, unsigned long BufferLen);

Note: Languages may also wish to provide 32-bit functions for use by 32-bit linkers, when
they become available. Function prototypes look like:

unsigned long _System InitDemangleID32(char * psInitParms);
unsigned long _System DemangleID32(char * psMangledName, char

* pszPrototype, unsigned long BufferLen);

2.4.15 88H PharLap Format Record (comment class AA)

2.4.15.1 Description:

The OMF extension designed by PharLap is called “Easy OMF-386” and changes to the
affected record types are described in this section.

Most modifications involve only a substitution of 32-bit (4-byte) fields for what were formerly
16-bit (2-byte) fields. In the two cases where the changes involve more than just a field size
(in the SEGDEF and FIXUPP records), the information is mentioned in this section but
complete details are given in the sections describing the specific records.

2.4.15.2 Record format:

The subrecord format is

DEMANGLEID Demangles first parameter (identifier, “_add__i_ii”)
to appropriate prototype (i.e. “int add(int, int)”) and
returns result in second parameter.

Figure 2-16: PharLap Format Record

1 5 (bytes)

AA “80386”

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

24 Revision 10

Note: The AA comment record should come immediately after the sole THEADR record.
Presence of the comment record indicates that the following other record types have
fields that are expanded from 16-bit to 32-bit values:

FIXUPP records have the added Loc values of 5 and 6. See § 2.4.23, “9CH or 9DH
FIXUPP Fixup Record”, on page 34 for details.

SEGDEF records have added alignment values (for 4-byte alignment and 4K byte
alignment) and an added optional byte at the end which contains the Use16/Use32
bit flag and access attributes (read/write/execute) for the segment. See § 2.4.21,
“98H or 99H SEGDEF Segment Definition Record”, on page 29 for details.

LINK386 ignores PHARLAP coment records.

2.4.16 8AH or 8BH MODEND Module End Record

2.4.16.1 Description:

The MODEND record denotes the end of the object module. It also indicates whether the
object module contains a main routine in a program, and it can, optionally, contain a
reference to a programs entry point.

SEGDEF offset field and offset field length

PUBDEF offset field

LEDATA offset field

LIDATA offset field (note that repeat count field is still 16 bits)

FIXUPP target displacement in explicit FIXUP subrecord

BLKDEF return address offset field

LINNUM offset field

MODEND target displacement field

Revision 10 25

The 16/32-Bit Object Module Format

2.4.16.2 Record format:

2.4.16.3 Module Type

The module type byte is bit-significant; layout is:

where:

MATTR

is a 2-bit field

SegBit

Reserved. Only 0 is supported by OS/2.

X

This bit should be set (as described for OMF86). However, as is the case for the
OMF86 linkers, the value will be ignored.

2.4.16.4 Start Address

The Start Address subfield is present only if the Strt bit in the Module Type byte is set. Its
format is identical to the FixDat, Frame Datum, Target Datum, and Target displacement in a
FIXUP subrecord of a FIXUPP record. The displacement (if present) is a 4 byte field if the
record type is 8BH and is a 2-byte field if the record type is 8AH. This value provides the
initial contents of CS:(E)IP.

Figure 2-17: MODEND Module End Record

1 Byte 2 Bytes 1 Byte 1 Byte 1 or 2 1 or 2 2 or 4 Bytes 1 Byte

8A or
8B

Record
Length

Module
Type

End
Data

Frame
Datum
Index

Target
Datum
Index

Target
Displacement

Chk
Sum
or 0

< - - - - - - - -Start Address (conditional)- - - - - - >

<- -1 byte - >

MATTR
Main Strt

Seg
Bit

0 0 0 0 0

2 bits 1 1 1 1 1 1

Main is set if the module is a main module

Strt is set if the module contains a start address; if this bit is set, the
field starting with the EndDat byte is present and specifies the start
address.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

26 Revision 10

The start address must be given in the MODEND record of the root module if overlays are
used.

Note: A MODEND record can appear only as the last record in an object module.

It is assumed that the link pass separator comment record (COMENT A2, subtype
01) will not be present in a module whose MODEND record contains a program
starting address.

2.4.17 8CH EXTDEF External Names Definition Record

2.4.17.1 Description:

The EXTDEF record contains a list of symbolic external references -- that is, references to
symbols defined in other object modules. The linker resolves external references by
matching the symbols declared in EXTDEF records with symbols declared in PUBDEF
records.

2.4.17.2 Record format:

This record provides a list of unresolved references, identified by name and with optional
associated type information. The external names are ordered by occurrence jointly with the
COMDEF and LEXTDEF records and referenced by an index in other records (FIXUPPs);
the name may not be null. Indices start from one.

String Length is a 1-byte field containing the length of the name field that follows it. The
length of the name is restricted to 255 bytes.

The Type Index is encoded as an index field and contains debug information. No type
checking is performed by the linker.

Note: The linker imposes a limit of 1023 external names.

Any EXTDEF records in an object module must appear before the FIXUPP records
that reference them.

Resolution of an external reference is by name match (case sensitive) and symbol
type match. The search first looks for a matching name, in the sequence:

1. Searches PUBDEF and COMDEF for resolution.

2. If linking a segmented executable, searches imported names (IMPDEF).

Figure 2-18: EXTDEF External Names Definition Record

1 Byte 2 Bytes 1 Byte <string length> 1 or 2 1 Byte

8C
Record
Length

String
Length

External Name String
Type
Index

Chk
Sum
or 0

< - - - - - - - - - - -repeated - - - - - - - - - - - ->

Revision 10 27

The 16/32-Bit Object Module Format

3. If this is not a DLL, then searches for an export (EXPDEF) with the same name -
- a self-imported alias.

4. Searches for the symbol name among undefined symbols. If the reference is to a
weak extern, then the default resolution is used. If the reference is to a strong
extern, then it’s an undefined external and a link error is generated.

All external references must be resolved at link time (using the above search order).
Even though the linker produces an executable file for and unsuccessful link
session, an error bit is set in the header which prevents the loader from running the
executable.

2.4.18 90H or 91H PUBDEF Public Names Definition Record

2.4.18.1 Description:

The PUBDEF record contains a list of public names. It makes items defined in this object
module available to satisfy external references in other modules with which it is bound or
linked.

The symbols are also available for export if so indicated in an EXPDEF comment record.

2.4.18.2 Record format:

2.4.18.3 Base Group, Base Segment and Base Frame

The base group and segment are indices specifying previously defined

SEGDEF and GRPDEF records. The group index may be zero, meaning that no group is
associated with this PUBDEF record.

The Base Frame field is present only if the Base Segment is zero, but the content of the
Base Frame is always ignored by the linker.

The Segment Index is normally nonzero and no Base Frame is present.

The Base Frame is normally used for absolute addressing when the Group and Segment
Index are both zero. Absolute addressing is not fully supported in the linker.

Figure 2-19: PUBDEF Public Names Definition Record

1 2 Bytes 1 or 2 1 or 2 2 Bytes 1 Byte
<string
length>

2 or 4 1 or 2
1

Byte

90
or
91

Record
Length

Base
Group
Index

Base
Segment

Index

Base
Frame

String
Length

Public
Name
string

Public
Offset

Type
Index

Chk
Sum
 or 0

<cond> < - - - - - - - - - - repeated - - - - - - - - - >

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

28 Revision 10

2.4.18.4 Public name, Public Offset and Type Index

The public name string is in <count, char> form and cannot be null. The maximum length of a
public name is 255 bytes.

The public offset is a 2 or 4 byte numeric field containing the offset of the location referred to
by the public name.

This offset is assumed to lie within the segment, group or frame specified in the public base
field.

The Type Index field is encoded in index format; it contains either debug type information or
zero. This field is ignored by the OS/2 2.0 linker.

Note: All defined functions and initialized global variables generate PUBDEF records.

Any PUBDEF records in an object module must appear after the GRPDEF and
SEGDEF records to which they refer.

The IBM C Compiler will generate PUBDEF records for all defined functions and
initialized global variables. Globals for scalars that are initialized to zero produce
COMDEF records.

Record type 90H uses 16-bit encoding of the Public Offset, but it is zero-extended to
32 bits if applied to Use32 segments.

2.4.19 94H or 95H LI NNUM Line Number Record

2.4.19.1 Description:

The LINNUM record relates line number within language source statements to addresses in
the object code.

2.4.19.2 Record format:

Associates a source line number with translated code or data. The LINNUM record is only
generated when the debug option is selected and is therefore specific to the debug
information. Refer to the specific debug documentation for more information.

Figure 2-20: LINNUM Line Number Record

1 Byte 2 Bytes 1 or 2 2 Bytes <variable> 1 Byte

94 or
95

Record
 Length

Base
Group
Index

Base
Segment

Index

Debugger Style Specific
Information

Chk
Sum
or 0

< - - - - - - - repeated - - - - - - - >

Revision 10 29

The 16/32-Bit Object Module Format

2.4.19.3 Base Group and Base Segment

The Base group and Base segment are indices specifying previously defined GRPDEF and
SEGDEF records. The group index is ignored. The segment index must be nonzero unless
the debugger style is version 3 or greater of the IBM PM debugger format.

2.4.20 96H LNAMES List of Names Record

2.4.20.1 Description:

The LNAMES record is a list of names that can be referenced by subsequent SEGDEF and
GRPDEF records in the object module.

The names are ordered by occurrence and referenced by index from subsequent records.
More than one LNAMES record may appear.

The names themselves are used as segment, class and group names.

2.4.20.2 Record format:

Each name appears in count/char format, and a null name is valid. The character set is
ASCII.

Note: The linker imposes a limit of 255 logical names per object module.

Any LNAMES records in an object module must appear before the records that refer
to them. Because it does not refer to any other type of object record, an LNAMES
record usually appears near the start of an object module.

2.4.21 98H or 99H SEGDEF Segment Definition Record

2.4.21.1 Description:

The SEGDEF record describes a logical segment in an object module. It defines the
segment’s name, length and alignment, as well as the way the segment can be combined
with other logical segments at bind, link and load time.

Object records that follow the SEGDEF record can refer to it to identify a particular segment.
The SEGDEF records are ordered by occurrence and are referenced by segment indexes
(origin 1) in subsequent records.

Figure 2-21: LNAMES List of Names Record

1 Byte 2 Bytes < - - - - - - - - - -string length - - - - - - - - - > 1 Byte

96
Record
 Length

String
Length

Name String
Chk
Sum
or 0

< - - - - - - - - - - - repeated - - - - - - - - - - >

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

30 Revision 10

2.4.21.2 Record format:

2.4.21.3 Segment Attributes

The segment attribute is bit-significant; the layout is:

The fields have the following meaning:

A

alignment, a 3-bit field, which specifies the alignment required when this program
segment is placed within a logical segment. Values are:

The new values are A=4 and A=5. Dword alignment is expected to be useful as 32-bit
memory paths become more prevalent. Page-align maps to the 80386 hardware page
size of 4K bytes.

Figure 2-22: SEGDEF Segment Definition Record

1
Byte

2 Bytes <variable>
2 or 4
Bytes

1 or 2
Byte

1 or 2
Byte

1 or 2
Byte

1 Byte

98 or
99

Record
 Length

Segment
Attribute

Segment
Length

Segment
Name
Index

Class
Name
Index

Overlay
 Name
Index

Chk
Sum
or 0

3 bits 3 bits 1 bit 1bit 2 bytes 1 byte

A C B P Frame Number Offset

<cond> <cond>

0 absolute segment

1 relocatable, byte aligned

2 relocatable, word (2 byte, 16-bit) aligned

3 relocatable, paragraph (16 byte) aligned

4 relocatable, aligned on page (4K byte) boundary.

5 relocatable, aligned on double word (4 byte) boundary

6 not supported

7 not defined

Revision 10 31

The 16/32-Bit Object Module Format

C

combination, a 3-bit field, which determines the way the program segment is mapped
into a logical segment. Values are:

B

big, used as the high order bit of the segment length field. If this bit is set the segment
length value must be zero and the segment’s size is 2ª32 or 4Gbytes long.

P

Holds the descriptor table B/D bit value (this is the descriptor table D bit for code
segments and the B bit for data segments).

If zero, then segment is no larger than 64K (if data) and 16-bit addressing and operands
are the default (if code). This is a Use16 segment.

If not zero, then the segment is no larger than 64k (if data) and 32-bit addressing and
operands are the default (if code). This is a Use32 segment.

Note: This is the only method for defining Use32 segments.

Frame Number

Frame number from a previous FIXUPP record. Present only for an absolute segment
(A=0).

Offset

Ignored by the linker. Present only for an absolute segment (A=0).

2.4.21.4 Segment Length

The Segment Length is a 2 or 4 byte numeric quantity and specifies the number of bytes in
this program segment.

0 private, do not combine with any other program segment

1 reserved

2 public, combine by appending at an offset which meets the alignment
requirement

3 reserved

4 same as C=2 (public)

5 stack, combine as for C=2.

6 common, combine by overlay using maximum size

7 same as C=2 (public)

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

32 Revision 10

Note: For record type 98H, the length can be from 0 to 64K; if a segment is exactly 64KB
in size, segment length should be 0 and the B field in the ACPB byte should be 1.
For record type 99H, the length can be from 0 to 4G; If segment is exactly 4Gbytes
in size, segment length should be set to zero and the B field in the ACBP byte
should be set to 1.

2.4.21.5 Segment Name Index, Class Name Index, Overlay Name Index

The three name indices refer to names that appeared in previous LNAMES record(s). The
linker ignores the overlay name index. The full name of a segment consists of the segment
and class names. Segments in different object modules are normally combined according to
the A and C values if their full names are identical. These indices must be nonzero, although
the name itself may be null.

The segment name index identifies the segment with a name. the name need not be unique -
- other segments of the same name will be concatenated onto the first segment with that
name. The name may have been assigned by the programmer, or it may have been
generated by the compiler.

The class name index identifies the segment with a class name (such as CODE, DATA or
STACK). The linker places segments with the same class name into a contiguous area of
memory in the run-time memory map.

The overlay index is ignored by the linker.

Note: The linker imposes a limit of 255 SEGDEF records per object module.

The following name/class combinations are reserved:

2.4.22 9AH GRPDEF Group Definition Record

2.4.22.1 Description:

The GRPDEF record causes the program segments defined by SEGDEF records to be
collected together (grouped). For OS/2 2.0, the segments are combined into a logical
segment which is to be addressed through a single selector for flat memory.

$$TYPE Reserved for Debug types.

$$SYMBOLS Reserved for Debug names.

CODE32 Reserved for IBM C Compiler.

DATA32 Reserved for IBM C Compiler.

CONST32 Reserved for IBM C Compiler.

BSS32 Reserved for IBM C Compiler.

DGROUP32 Reserved for IBM C Compiler.

Revision 10 33

The 16/32-Bit Object Module Format

2.4.22.2 Record format:

This record causes the program segments identified by SEGDEF records to be collected
together (grouped) within a logical segment which is to be addressed through a single
selector.

2.4.22.3 Group Name

The group name is specified as an index into a previously defined LNAMES name and must
be nonzero.

Groups from different object modules are coalesced if their names are identical.

2.4.22.4 Group Components

The group’s components are segments, specified as indices into previously defined
SEGDEF records.

The first byte of each group component is a type field for the remainder of the component.
The linker requires a type value of FFH and always assumes that the component contains a
segment index value.

The component fields are usually repeated so that all segments constituting a group can be
included in one GRPDEF record.

Note: This record is frequently followed by a THREAD fixup.

The linker imposes a limit of 31 GRPDEF records in a single object module and
limits the total number of group definitions across all object modules to 31.

An example of a group for the IBM C Compiler is DGROUP32 which groups
DATA32, CONST32 and BSS32.

The linker does special handling of the pseudo-group FLAT. All address references
to this group are made as offsets from the virtual zero address, which is the start of
the memory image of the executable.

Figure 2-23: GRPDEF Group Definition Record

1 Byte 2 Bytes 1 or 2 Bytes 1 Byte 1 or 2 Bytes 1 Byte

9A
Record
 Length

Group Name
Index

FF Segment Def. Index
Chk
Sum
or 0

<- - - - - - - - - - - -repeated - - - - - - - - - - >

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

34 Revision 10

2.4.23 9CH or 9DH FIXUPP Fixup Record

2.4.23.1 Description:

The FIXUPP record contains information that allows the linker to resolve (fix up) and
eventually relocate references between object modules. FIXUPP records describe the
LOCATION of each address value to be fixed up, the TARGET address to which the fixup
refers and the FRAME relative to which the address computation is performed.

2.4.23.2 Record format:

Record type 9DH is new for LINK386; it has a Target Displacement field of 32 bits rather than
16 bits, and the LOC field of the LOCAT word has been extended to 4 bits (using the
previously unused higher-order ‘S’ bit) to allow new LOC values of 9, 11 and 13.

Each subrecord in a FIXUPP object record either defines a thread for subsequent use, or
refers to a data location in the nearest previous LEDATA or LIDATA record. The high order bit
of the subrecord determines the subrecord type: if the high order bit is 0, the subrecord is a
THREAD subrecord; if the high order bit is 1, the subrecord is a FIXUP subrecord.
Subrecords of different types may be mixed within one object record.

Information that determines how to resolve a reference can be specified explicitly in a FIXUP
subrecord, or can be specified within a FIXUP subrecord by a reference to a previous
THREAD subrecord. A THREAD subrecord describes only the method to be used by the
linker to refer to a particular target or frame. Because the same THREAD can be referenced
in several subsequent FIXUP subrecords, a FIXUPP object record that uses THREADs may
be smaller than one in which THREADs are not used.

THREAD subrecords can be referenced in the same object record in which they appear and
also in subsequent FIXUPP object records.

2.4.23.3 THREAD

There are 4 frame threads and 4 target threads; not all need be defined and they can be
redefined by later THREAD subrecords in the same or later FIXUPP object records. The
frame threads are used to specify the Frame Datum field in a later FIXUP subrecord: the
target threads are used to specify the Target Datum field in a later FIXUP subrecord.

A THREAD subrecord defines a thread, and does not require that a previous LEDATA or
LIDATA record occur.

Figure 2-24: FIXUPP Fixup Record

1 Byte 2 Bytes < - - - - - - -from the record length - - - - - - -> 1 Byte

9C or
9D

Record
 Length

THREAD subrecord or
FIXUP subrecord

Chk
Sum
or 0

< - - - - - - - - - - - repeated- - - - - - - - - - - ->

Revision 10 35

The 16/32-Bit Object Module Format

The layout of the THREAD subrecord is as follows:

0

The high order bit is zero to indicate that this is a THREAD subrecord.

D

is 0 for a target thread, 1 for a frame thread

METHOD

is a 3-bit field.

For target threads, only the lower two bits of the field are used; the high-order bit of the
method is derived from the P bit in the FixDat field of the FIXUP subrecords that refer to
this thread. The full list of methods is given here for completeness. This field determines
the kind of index required to specify the Target Datum.

The index type specified by the target thread method is encoded in the index field.

For frame threads, the method field determines the Frame Datum field of subsequent
FIXUP subrecords that refer to this thread. Values for the method field are:

< - - - - - - - - - - - 1 Byte - - - - - - - - - - > 1 or 2 Bytes

0 D 0 METHOD THRED Index

1 1 1 3 bits 2 bits <conditional>

T0 specified by a SEGDEF index

T1 specified by a GRPDEF index

T2 specified by a EXTDEF index

T3 specified by an explicit frame number (not supported by the linker)

T4 specified by a SEGDEF index only; the displacement in the FIXUP
subrecord is assumed to be 0.

T5 specified by a GRPDEF index only; the displacement in the FIXUP
subrecord is assumed to be 0.

T6 specified by a EXTDEF index only; the displacement in the FIXUP
subrecord is assumed to be 0.

F0 the FRAME is specified by a SEGDEF index

F1 the FRAME is specified by a GRPDEF index

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

36 Revision 10

The index field is present for frame methods F0, F1, and F2 only.

THRED

is a 2-bit field and determines the thread number (0 through 3, for the 4 threads of each
kind).

Index

is a conditional field that contains an index value that refers to a previous SEGDEF,
GRPDEF or EXTDEF record. The field is only present if the thread method is 0, 1 or 2. If
method 3 were supported by the linker, the Index field would contain an explicit frame
number.

2.4.23.4 FIXUP

A FIXUP subrecord gives the how/what/why/where/who information required to convert a
reference when program segments are combined or placed within logical segments. It
applies to the nearest previous LEDATA or LIDATA record, which must be defined before the
FIXUP. This FIXUP subrecord is as follows:

where the LOCAT field has an unusual format. Contrary to the usual byte order in Intel data
structures, the most significant bits of the LOCAT field are found in the low-order, rather than
the high-order byte.

F2 the FRAME is specified by a EXTDEF index. The linker determines the
FRAME from the external name’s corresponding PUBDEF record in
another object module, which specifies either a logical segment or a
group.

F3 invalid (The FRAME is identified by an explicit frame number; this is not
supported by the linker)

F4 the FRAME is determined by the segment index of the previous
LEDATA or LIDATA record (i.e. the segment in which the location is
defined).

F5 the FRAME is determined by the TARGET’s segment, group or external
index

F6 invalid

2 Bytes 1 Bytes 1 or 2 Bytes 1 or 2 Bytes 2 or 4 Bytes

LOCAT FixDat Frame Datum Target Datum Target Displacement

<cond> <cond> <conditional>

Revision 10 37

The 16/32-Bit Object Module Format

The LOCAT field is:

where:

1

the high bit of the low-order byte is set to indicate a FIXUP subrecord.

M

is the mode, M=1 for segment-relative and M=0 for self-relative fixups

LOC

is a 4-bit field which determines what type of location is to be fixed up:

Data Record Offset

The Data record offset indicates the position of the location to be fixed up in the LEDATA
or LIDATA record immediately preceding the FIXUPP record. This offset indicates either
a byte in the data field of an LEDATA record or a data byte in the content field of an
iterated data block in an LIDATA record.

< - - - - - - - low byte - - - - - - > <- - - - - - - high byte - - - - - - - >

1 M LOC Data Record Offset

1 1 4 bits 10 bits

0 Low-order byte (8-bit displacement or low byte of 16-bit offset)

1 16-bit Offset

2 16-bit Base - logical segment base (selector)

3 32-bit Long pointer (16-bit base : 16-bit offset)

4 Hi-order byte (high byte of 16-bit offset) No linker support for this type.

5 16-bit loader-resolved offset, treated as LOC=1 by the linker
CONFLICT PharLap OMF uses LOC=5 to indicate a 32-bit offset, where
Microsoft and IBM use LOC=9.

6 not defined, reserved
CONFLICT PharLap OMF uses LOC=6 to indicate a 48-bit pointer (16-bit
base : 32-bit offset) where Microsoft and IBM use LOC=11.

7 not defined, reserved

9 32-bit offset

11 48-bit pointer (16-bit base : 32-bit offset)

13 32-bit loader-resolved offset, treated as LOC=9 by the linker

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

38 Revision 10

The FixDat bit layout is:

and is interpreted as follows:

F

If F=1, the frame is given by a frame thread whose number is in the FRAME field
(modulo 4). There is no frame datum field in the subrecord.

If F=0, the frame method (in the range F0 to F5) is explicitly defined in this FIXUP
subrecord. The method is stored in the FRAME field.

FRAME

3-bit numeric, interpreted according to the F bit. The Frame Datum field is present and is
an index field for frame methods F0, F1, and F2 only.

T

If T=1 the target is defined by a target thread whose thread number is given in the 2-bit
TARGT field. The TARGT field contains a number between 0 and 3 that refers to a
previous thread field containing the target method. The P bit, combined with the two low-
order bits of the method field in the THREAD subrecord, determines the target method.

If T=0 the target is specified explicitly in this FIXUP subrecord. In this case, the P bit and
the TARGT field can be considered a 3-bit field analogous to the FRAME field.

P

Determines whether the target displacement field is present.

If P=1 there is no displacement field.

If P=0, the displacement field is present.

TARGT

is a 2-bit numeric, which gives the lower two bits of the target method (if T=0) or gives
the target thread number (if T=1).

Frame Datum

is an index field that refers to a previous SEGDEF, GRPDEF or EXTDEF record,
depending on the FRAME method.

Target Datum

contains a segment index, a group index or an external index depending on the TARGET
method.

F FRAME T P TARGT

1 3 bits 1 1 2 bits

Revision 10 39

The 16/32-Bit Object Module Format

Target Displacement

a 16-bit or 32-bit field is present only if the P bit in the FixDat field is set to 0, in which
case the Target Displacement field contains the offset used in methods 0, 1 and 2 of
specifying a TARGET.

Note: FIXUPP records are used to fix references in the immediately preceding LEDATA,
LIDATA or COMDAT record.

The FRAME is the translator’s way of telling the linker the contents of the segment
register used for the reference; the TARGET is the item being referenced whose
address was not completely resolved by the translator. In protect mode, the only
legal segment register value are selectors; every segment and group of segments is
mapped through some selector and addressed by offset within the underlying
memory defined by that selector.

2.4.24 A0H or A1H LEDATA Logical Enumerated Data Record

2.4.24.1 Description:

This record provides contiguous binary data -- executable code or program data -- which is
part of a program segment. The data is eventually copied into the program’s executable
binary image by the linker.

The data bytes may be subject to relocation or fix-up as determined by the presence of a
subsequent FIXUPP record but otherwise requires no expansion when mapped to memory
at run time.

2.4.24.2 Record Format:

Record type A1H is new for LINK386; it has an Enumerated Data Offset field of 32 bits rather
than 16 bits.

2.4.24.3 Segment Index

The SegIndex must be nonzero and is the index of a previously defined SEGDEF record.
This is the segment into which the data in this LEDATA record is to be placed.

Figure 2-25: LEDATA Logical Enumerated Data Record

1 Byte 2 Bytes
1 or 2
Bytes

2 or 4 Bytes <from Record Length> 1 Byte

A0 or
A1

Record
 Length

SegIndex Enum Data Offset Data Bytes
Chk
Sum
or 0

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

40 Revision 10

2.4.24.4 Enumerated Data O ffset

The enumerated data offset is a 2 or 4 byte field (depending on the record type) which
determines the offset at which the first data byte is to be placed relative to the start of the
SEGDEF segment. Successive data bytes occupy successively higher locations.

2.4.24.5 Data Bytes

The maximum number of data bytes is 1024, so that a FIXUPP location field, which is 10
bits, can reference any of these data bytes. The number of data bytes is computed as the
RecLength minus 5 minus the size of the SegIndex field (1 or 2 bytes).

Note: Record type A1H has offset stored as a 32-bit numeric. Record type A0 encodes the
offset value as a 16-bit numeric (zero extended if applied to a Use32 segment).

If the LEDATA requires fixup, a FIXUPP record must immediately follow the LEDATA
record.

2.4.25 A2H or A3H LIDATA Logical Iterated Data Record

2.4.25.1 Description:

Like the LEDATA record, the LIDATA record contains binary data -- executable code or
program data. The data in an LIDATA record, however, is specified as a repeating pattern
(iterated), rather than by explicit enumeration.

The data in an LIDATA record may be modified by the linker if the LIDATA record is
immediately followed by a FIXUPP record.

2.4.25.2 Record format:

Record type A3H is new for LINK386; it has Iterated Data Offset and Repeat Count fields of
32 bits rather than 16 bits.

2.4.25.3 Segment Index and Data Offset

The segment index and data offset (2 or 4 bytes) are the same as for an LEDATA record.
The index must be nonzero.

Figure 2-26: LIDATA Logical Iterated Data Record

1 Byte 2 Bytes
1 or 2
Bytes

4 Bytes <from Record Length> 1 Byte

A2 or
A3

Record
 Length

SegIndex Data Offset Data Block
Chk
Sum
or 0

< - - - - -repeated - - - - >

Revision 10 41

The 16/32-Bit Object Module Format

2.4.25.4 Data Block

The data blocks have the following form:

2.4.25.5 Repeat Count

The Repeat Count is a 16-bit or 32-bit value which determines the number of repeats of the
content field. The Repeat Count is 32 bits only if the record type is A3.

CONFLICT: The PharLap OMF uses a 16-bit repeat count even in 32-bit records.

2.4.25.6 Block Count

The Block Count is a 16-bit word whose value determines the interpretation of the content
portion, as follows:

Note: A subsequent FIXUPP record may occur; the fixup is applied before the iterated data
block is expanded. It is a translator error for a fixup to reference any of the count
fields.

2.4.26 B0H COMDEF Communal Names Definition Record

2.4.26.1 Description:

The COMDEF record declares a list of one or more communal variables (uninitialized static
data, or data that may match initialized static data in another compilation group).

The size of such a variable is the maximum size defined in any module naming the variable
as communal or public. The placement of communal variables is determined by the data type
using established conventions (see data type and communal length below).

2 or 4 Bytes 2 Bytes < - - - - - - - - - - - repeated - - - - - - - - - - - - >

Repeat
Count

Block
Count

Data Block

0 indicates that the content field that follows is a one byte “count” value followed
by “count” data bytes. The data bytes will be mapped to memory, repeated
Repeat Count times.

!=0 indicates the content field that follows is comprised of one or more Data Blocks.
The Block Count value specifies the number of Data Blocks (recursive
definition).

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

42 Revision 10

2.4.26.2 Record format:

2.4.26.3 Communal Name

The name is in <count, char> string format (and name may be null). Near and Far
communals from different object files are matched at bind or link time if their names agree;
the variable’s size is the maximum of the sizes specified (subject to some constraints, as
documented below).

2.4.26.4 Type Index

Encodes symbol information; it is parsed as an index field (one or 2 bytes), and not
inspected by the linker.

2.4.26.5 Data Type and Communal Length

The data type field indicates the contents of the Communal Length field. All Data type values
for Near data indicate that the Communal Length field has only one numeric value: the
amount of memory to be allocated for the communal variable. All Data Type values for Far
data indicate that the Communal Length field has two numeric values: the first is the number
of elements and the second is the element size.

The DataType is one of the following hex values:

The communal length is a single numeric or a pair of numeric fields (as specified by the Data
Type), encoded as follows:

Figure 2-27: COMDEF Communal Names Definition Record

1
Byte

2 Bytes 1 or 2 <string>
1 or 2
Bytes

1 Byte <from data type> 1 Byte

B0
Record
 Length

Str.
Len

Communal
 Name

Type
Index

Data
Type

Communal
Length

Chk
Sum
or 0

< - - - - - - - - - - - - - - - - - - - repeated - - - - - - - - - - - - - - - - >

61H FAR data; length specified as number of elements followed by element size in
bytes.

62H NEAR data; length specified as number of bytes.

1 byte value 0 through 128 (80 hex)

3 byte byte 81 hex, followed by a 16-bit word whose value is used (range 0 to 64K-1)

4 byte byte 84 hex, followed by a 3 byte value (range 0 to 16M-1)

5 byte byte 88 hex, followed by a 4 byte value (range -2G-1 to 2G-1, signed)

Revision 10 43

The 16/32-Bit Object Module Format

Groups of name, type index, segment type and communal length fields can be repeated so
that more than one communal variable can be declared in the same COMDEF record.

Note: If a public or exported symbol with the same name is found in another module with
which this is bound or linked, the linker gives a multiple defined symbol error
message,

Communal variables cannot be resolved to dynamic links (i.e. imported symbols).

The records are ordered by occurrence, together with the items named in EXTDEF
records (for reference in FIXUPPs).

The IBM C Compiler generates COMDEFs for all uninitialized global data and for
global scalars initialized to zero.

2.4.27 B2H or B3H BAKPAT Backpatch Record

2.4.27.1 Description:

This record is for backpatches to locations which cannot be conveniently handled by a
FIXUPP at reference time. For example, forward references in a one-pass compiler. It is
essentially a specialized fixup.

2.4.27.2 Record format:

SegIndex

Segment index to which all “backpatch” fixups are to be applied. Note that, in contrast to
FIXUPPs, these records need not follow the data record to be fixed up. Hence, the
segment to which the backpatch applies must be specified explicitly.

LocTyp

Type of location to be patched; the only valid values are:

Offset and value

These fields are 32-bits for record type B3, 16-bit for B2.

Figure 2-28: BAKPAT Backpatch Record

1 Byte 2 Bytes 1 or 2 Bytes 1 Byte 2 or 4 Bytes 2 or 4 Bytes 1 Byte

B2 or
B3

Record
 Length

SegIndex
Loc

Type
Offset Value

Chk
Sum
or 0

<- - - - - - -repeated - - - - - - >

0 8-bit lobyte

1 16-bit offset

9 32-bit offset, record type B3 only

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

44 Revision 10

The Offset specifies the location to be patched (as an offset into the SEGDEF whose
index is SegIndex).

The associated Value is added to the location being patched (unsigned addition, ignoring
overflow). The Value field is fixed length (16-bit or 32-bit, depending on the record type)
to make object module processing easier.

Note: BAKPAT records can occur anywhere in the object module following the SEGDEF
record to which they refer. They do not have to immediately follow the appropriate
LEDATA record as FIXUPP record do.

These records are buffered by the linker in Pass 2 until the end of the module, after
applying all other FIXUPPs. The linker then processes the records as fixups.

2.4.28 B4H or B5H LEXTDEF Local External Names Definition Record

2.4.28.1 Description:

This record is identical in form to the EXTDEF record described earlier. However, the
symbols named in this record are not visible outside the module in which they are defined.

2.4.28.2 Record format:

Note: There is no semantic difference between the B4 and B5 flavors.

These records are associated with LPUBDEF and LCOMDEF records, ordered with
the EXTDEF records by occurrence, so that they may be referenced by external
index for fixups.

The name string, when stored in LINK’s internal data structures, is encoded with
spaces and digits at the beginning of the name.

2.4.29 B6H or B7H LPUBDEF Local Public Names Definition Record

2.4.29.1 Description:

This record is identical in form to the PUBDEF record described earlier. However, the
symbols named in this record are not visible outside the module in which they are defined.

Figure 2-29: LEXTDEF Local External Names Definition Record

1 Byte 2 Bytes 1 Byte <string length> 1 or 2 1 Byte

B4 or
B5

Record
Length

String
Length

External Name String
Type
Index

Chk
Sum
or 0

< - - - - - - - - - - repeated- - - - - - - - - - - - ->

Revision 10 45

The 16/32-Bit Object Module Format

2.4.29.2 Record format:

2.4.30 B8H LCOMDEF Local Communal Names Definition Record

2.4.30.1 Description:

This record is identical in form to the COMDEF record described earlier. However, the
symbols named in this record are not visible outside the module in which they are defined.

2.4.30.2 Record format:

2.4.31 C2H or C3H COMDAT Initialized Communal Data Record

2.4.31.1 Description:

The purpose of the COMDAT record is to combine logical blocks of code and data which
may be duplicated across a number of compiled modules.

Figure 2-30: LPUBDEF Local Public Names Definition Record

1 2 Bytes 1 or 2 1 or 2 2 Bytes 1 Byte
<string
length>

2 or 4 1 or 2
1

Byte

B6
or
B7

Record
Length

Base
Group
Index

Base
Segment

Index

Base
Frame

String
Length

Public
Name
string

Public
Offset

Type
Index

Chk
Sum
 or 0

<cond> < - - - - - - - - - - repeated - - - - - - - - - >

Figure 2-31: LCOMDEF Local Communal Names Definition Record

1
Byte

2 Bytes 1 or 2 <string>
1 or 2
Bytes

1 Byte <from data type> 1 Byte

B8
Record
 Length

Str.
Len

Communal
 Name

Type
Index

Data
Type

Communal
Length

Chk
Sum
or 0

< - - - - - - - - - - - - - - - - - - - repeated - - - - - - - - - - - - - - - - >

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

46 Revision 10

2.4.31.2 Record format:

2.4.31.3 Flags

This field contains three defined bits:

2.4.31.4 Attr

This field contains two 4-bit fields: the selection criteria to be used, the allocation type and
the ordinal specifying the type of allocation to be performed. Values are:

Figure 2-32: COMDAT Initialized Communal Data Record

1 2 1 1 1 2 or 4 1 or 2 1 or 2
<string
length>

1
1

Byte

C2
or
C3

Record
Length

Flag Attr. Align
Enum
 Data
Offset

Type
Index

Public
Base

Public
Name
string

DAT
Chk
Sum
 or 0

<con> <repeat>

01H Continuation bit. If clear, then this COMDAT record establishes a new
instance of the COMDAT variable, otherwise the data is a continuation of the
previous COMDAT of the symbol.

02H Iterated data bit. If clear, the DAT field contains enumerated data, otherwise
the DAT field contains iterated data, as in an LIDATA record.

04H Local COMDAT. The public name is local.

Revision 10 47

The 16/32-Bit Object Module Format

2.4.31.5 Selection criteria (high-order 4 bits):

2.4.31.6 Allocation Type (low-order 4 bits):

2.4.31.7 Align

These codes are based on the ones used by the SEGDEF record:

00H No match - only one instance of this COMDAT allowed.

10H Pick any - pick any instance of this COMDAT record.

20H Same size - pick any, but instances must have the same length or linker will
generate an error.

30H Exact Match - pick any, but checksums of instances must match of linker
will generate an error. Fixups are ignored.

40H -
F0H

reserved.

00H Explicit - allocate in the segment specified in the ensuing public base field.

01H Far Code - allocate as CODE16. The linker will create segments to contain
all COMDATs of this type.

02H Far DATA - allocate as DATA16. The linker will create segments to contain
all COMDATs of this type.

03H CODE32 - allocate as CODE32. The linker will create segments to contain
all COMDATs of this type.

04H DATA32 - allocate as DATA32. The linker will create segments to contain all
COMDATs of this type.

05H -
0FH

Reserved.

0 use value from SEGDEF.

1 byte aligned.

2 word (2 byte) aligned.

3 paragraph (16 byte) aligned.

4 4K page aligned.

5 dword (4 byte) aligned.

6 not defined.

7 not defined.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

48 Revision 10

2.4.31.8 Enum Data O ffset

This field specifies an offset relative to the beginning location of the symbol specified in the
public name field and defines the relative location of the first byte of the DAT field.
Successive data bytes in the DAT field occupy higher locations of memory. This works very
much like the offset field in an LEDATA record, but instead of an offset relative to a segment,
this is relative to the beginning of the COMDAT symbol.

2.4.31.9 Type Index

The type index field is encoded in index format; it contains either debug type information or
an old-style TYPDEF index. If this index is zero, there is no associated type data. Old-style
TYPDEF indices are ignored by the linker. Present linkers do no type checking.

2.4.31.10 Public Base

This field is conditional and is identical to the public base stored in the public base field in the
PUBDEF record. This field is only present if the allocation type field specifies explicit
allocation.

2.4.31.11 Public Name

This field is a regular length prefixed name.

2.4.31.12 DAT

The DAT field provides up to 1024 consecutive bytes of data. If there are fixups, they must
be emitted in a FIXUPP record that follows the COMDAT record. The data can be either
enumerated or iterated, depending on the flags field.

Note: While creating addressing frames, the linker will add the COMDAT data to the
appropriate logical segments, adjusting their sizes. At that time the offset at which
the data will go inside the logical segment will be calculated. Next, the linker will
create physical segments from adjusted logical segments reporting any 64K
boundary overflows.

If the allocation type is not explicit, COMDAT code and data is accumulated by the
linker and broken up into segments, so that the total may exceed 64K.

In pass two, only the selected occurrence of COMDAT data will be stored in the VM,
fixed up and later written into the .EXE file.

2.4.32 C4H or C5H LINSYM Symbol Line Numbers Record

2.4.32.1 Description:

This record will be used to output numbers for functions specified via COMDATs.

Revision 10 49

The 16/32-Bit Object Module Format

2.4.32.2 Record format:

2.4.32.3 Flags

This field contains two defined bits:

The Symbol Name Base is a length-preceded name of the base of the LINSYM record.

The Line Number is an unsigned number in the range 0 to 65535.

The Line Number Offset field is the offset relative to the base specified by the symbol name
base. The size of this field depends on the record type.

Note: Record type C5H identical to C4H except that the Line Number Offset field is 4 bytes
instead of 2.

The record is used to output line numbers for functions specified via COMDATs.
Often, the residing segment as well as the relative offsets of such function is
unknown at compile time, in that the linker is the final arbitrator of such information.
For such cases the compiler will generate this record to specify the line number/
offset pairs relative to a symbolic name.

The record will also be used to discard duplicate linnum information. If the linker
encounters two LINSYM records with matching symbolic names, the linker will keep
the first set of linnums and discard all subsequent LINSYM records of that name.

2.4.33 C6H ALIAS Alias Definition Record

2.4.33.1 Description:

This record has been introduced to support link-time aliasing, or a method by which
compilers or assembles may direct the linker to substitute all references to one symbol for
another.

Figure 2-33: LINSYM Symbol Line Numbers Record

1
Byte

2 Bytes 1 Byte <variable> 2 Bytes 2 or 4 Bytes 1 Byte

C4
or C5

Record
 Length

Flags
Symbol

Name Base
Line

Number
Line Number

Offset

Chk
Sum
or 0

< - - - - - - -repeated - - - - - >

01H Continuation bit. If clear, then this COMDAT record establishes a new
instance of the COMDAT variable, otherwise the data is a continuation of the
previous COMDAT of the symbol.

04H Local COMDAT

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

50 Revision 10

2.4.33.2 Record format:

The Alias Name field is a regular length-preceded name of the alias symbol.

The Substitute Name field is a regular length-preceded name of the substitute symbol.

Note: The record will consist of two symbolic names: the alias symbol and the substitute
symbol. The alias symbol behaves very much like a PUBDEF in that it must be
unique. If a PUBDEF of an alias symbol is encountered or another ALIAS record with
a different substitute symbol is encountered, a redefinition error should be emitted by
the linker.

When attempting to satisfy an external reference, if an ALIAS record whose alias
symbol matches is found, the linker will halt the search for alias symbol definitions
and will attempt to satisfy the reference with the substitute symbol.

All ALIAS records must appear before the link pass 2 record.

2.4.34 C8H or C9H NBKPAT Named Backpatch Record

2.4.34.1 Description:

The Named Backpatch record is like a BAKPAT record, except that it refers to a COMDAT, by
name, rather than an LIDATA or LEDATA record.

Figure 2-34: ALIAS Alias Definition Record

1
Byte

2 Bytes <variable> <variable> 1 Byte

C6
Record
 Length

Alias Name Substitute Name
Chk
Sum
or 0

< - - - - - - - - - - - - - repeated - - - - - - - - - - - >

Revision 10 51

The 16/32-Bit Object Module Format

2.4.34.2 Record format:

2.4.34.3 LocType

Type of location to be patched; the only valid values are:

2.4.34.4 Public Name

Length-preceded name of the COMDAT to back patch.

2.4.34.5 Offset and Value

These fields are 16-bits for record type C8, 32-bits for C9.

The Offset specifies the location to be patched, as an offset into the COMDAT.

The associated Value is added to the location being patched (unsigned addition, ignoring
overflow). The Value field is fixed length (16-bit or 32-bit, depending on the record type) to
make object module processing easier.

Figure 2-35: NBKPAT Named Backpatch Record

1 Byte 2 Bytes 1 Byte <variable> 2 or 4 Bytes 2 or 4 Bytes 1 Byte

C8 or
C9

Record
 Length

Loc
Type

Public Name Offset Value
Chk
Sum
or 0

< - - - - - - repeated - - - - - - ->

0 8-bit byte

1 16-bit word

2 32-bit dword, record type C9 only

0x80 local COMDAT

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

52 Revision 10

Revision 10 53

LX - Linear eXecutable Module Format Description

3 LX - Linear eXecutable Module Format Description

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

54 Revision 10

3.1 32-bit Linear EXE Header

The LX module header may optionally be preceded by a DOS 2 compatible module header.
The DOS 2 compatible module header is identified by the first two bytes of the header
containing the signature characters “MZ”. If the DOS 2 compatible module header is absent
then the module will start with the LX module header.

If a module begins with a DOS 2 compatible module header, then the following technique
should be used to locate the LX module header, if present. The word at offset 18h in the
DOS 2 compatible module header is the offset to the DOS relocation table. If this offset is
40h, then the doubleword at offset 3Ch in the DOS 2 compatible module header contains the
offset, from the beginning of the file, to the new module header. This may be an LX module
header and can be identified by the first two bytes of the header containing the signature
characters “LX”. If a valid module header is not found, then the file is a DOS 2 compatible
module.

The remainder of the DOS 2 compatible module header will describe a DOS stub program.
The stub may be any valid program but will typically be a program which displays an error
message. It may also be a DOS version of the LX program.

Figure 3-1: DOS 2.0 Section (Discarded)

00h DOS 2 Compatible
EXE header

1Ch unused

24h OEM Identifier

26h OEM Info

3Ch Offset to Linear EXE
Header

40h DOS 2.0 Stub
Program and
Relocation Table

Figure 3-2: Linear Executable Module Header (Resident)

xxh Executable Info

Module Info

Loader Section Info

Table Offset Info

Revision 10 55

LX - Linear eXecutable Module Format Description

Note: The Fixup Section must immediately follow the Loader Section in the
executable file. Although they are defined as two separate sections, the
OS/2 loader currently treats these two sections as one section.

Figure 3-3: Loader Section (Resident)

Object Table

Object Page Table

Resource Table

Resident Name Table

Entry Table

Module Format Directives
Table (Optional)

Resident Directives Data
(Optional)
(Verify Record)

Per-Page Checksum

Figure 3-4: Fixup Section (Resident)

Fixup Page Table

Fixup Record Table

Import Module Name Table

Import Procedure Name
Table

Figure 3-5: Data Section (Non-Resident)

Preload Pages

Demand Load Pages

Iterated Pages

Non-Resident Name Table

Non-Resident Directives Data
(Optional)
(To be Defined)

Figure 3-6: Debug Section (Not used by the Loader)

Debug Info

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

56 Revision 10

Note: The standard section ordering of an LX module is the LX module header, the
resident sections, the non-resident sections and finally the debug section (if present).
It is also permissable to use an alternate section ordering of the LX module header,
the non-resident sections, the resident sections and finally the debug section (if
present).

Revision 10 57

LX - Linear eXecutable Module Format Description

3.2 LX Header

Note: The OBJECT ITER PAGES OFF must either be 0 or set to the same value as DATA
PAGES OFFSET in OS/2 2.0. I.e. iterated pages are required to be in the same
section of the file as regular pages.

Note: Table offsets in the Linear EXE Header may be set to zero to indicate that the table
does not exist in the EXE file and it’s size is zero.

Figure 3-7: 32-bit Linear EXE Header

00h
“L” “X” B-ORD

W-
ORD

FORMAT LEVEL

08h CPU TYPE OS TYPE MODULE VERSION

10h MODULE FLAGS MODULE # OF PAGES

18h EIP OBJECT # EIP

20h ESP OBJECT # ESP

28h PAGE SIZE PAGE OFFSET SHIFT

30h FIXUP SECTION SIZE FIXUP SECTION CHECKSUM

38h LOADER SECTION SIZE LOADER SECTION CHECKSUM

40h OBJECT TABLE OFF # OBJECTS IN MODULE

48h OBJECT PAGE TABLE OFF OBJECT ITER PAGES OFF

50h RESOURCE TABLE OFFSET #RESOURCE TABLE ENTRIES

58h RESIDENT NAME TBL OFF ENTRY TABLE OFFSET

60h MODULE DIRECTIVES OFF # MODULE DIRECTIVES

68h FIXUP PAGE TABLE OFF FIXUP RECORD TABLE OFF

70h IMPORT MODULE TBL OFF # IMPORT MOD ENTRIES

78h IMPORT PROC TBL OFF PER-PAGE CHECKSUM OFF

80h DATA PAGES OFFSET #PRELOAD PAGES

88h NON-RES NAME TBL OFF NON-RES NAME TBL LEN

90h NON-RES NAME TBL CKSM AUTO DS OBJECT #

98h DEBUG INFO OFF DEBUG INFO LEN

A0h #INSTANCE PRELOAD #INSTANCE DEMAND

A8h HEAPSIZE STACKSIZE

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

58 Revision 10

”L” “X” = DW Signature word.

The signature word is used by the loader to identify the EXE file as a valid 32-bit
Linear Executable Module Format. “L” is low order byte. “X” is high order byte.

B-ORD = DB Byte Ordering.

This byte specifies the byte ordering for the linear EXE format. The values are:

00H - Little Endian Byte Ordering.

01H - Big Endian Byte Ordering.

W-ORD = DB Word Ordering.

This byte specifies the Word ordering for the linear EXE format. The values are:

00H - Little Endian Word Ordering.

01H - Big Endian Word Ordering.

Format Level = DD Linear EXE Format Level.

The Linear EXE Format Level is set to 0 for the initial version of the 32-bit linear EXE
format. Each incompatible change to the linear EXE format must increment this
value. This allows the system to recognized future EXE file versions so that an
appropriate error message may be displayed if an attempt is made to load them.

CPU Type = DW Module CPU Type.

This field specifies the type of CPU required by this module to run. The values are:

01H - 80286 or upwardly compatible CPU is required to execute this module.

02H - 80386 or upwardly compatible CPU is required to execute this module.

03H - 80486 or upwardly compatible CPU is required to execute this module.

OS Type = DW Module OS Type.

This field specifies the type of Operating system required to run this module. The
currently defined values are:

00H - Unknown (any “new-format” OS)

01H - OS/2 (default)

02H - Windows1

03H - DOS 4.x

04H - Windows 386

05H - IBM Microkernel Personality Neutral

MODULE VERSION = DD Version of the linear EXE module.

This is useful for differentiating between revisions of dynamic linked modules. This
value is specified at link time by the user.

1. Windows is a Registered Trademark of Microsoft Corp.

Revision 10 59

LX - Linear eXecutable Module Format Description

MODULE FLAGS = DD Flag bits for the module.

The module flag bits have the following definitions.

00000001h = Reserved for system use.

00000002h = Reserved for system use.

00000004h = Per-Process Library Initialization.

The setting of this bit requires the EIP Object # and EIP fields to have valid
values. If the EIP Object # and EIP fields are valid and this bit is NOT set,
then Global Library Initialization is assumed. Setting this bit for an EXE file is
invalid.

00000008h = Reserved for system use.

00000010h = Internal fixups for the module have been applied.

The setting of this bit in a Linear Executable Module indicates that each
object of the module has a preferred load address specified in the Object
Table Reloc Base Addr. If the module’s objects can not be loaded at these
preferred addresses, then the relocation records that have been retained in
the file data will be applied.

00000020h = External fixups for the module have been applied.

00000040h = Reserved for system use.

00000080h = Reserved for system use.

00000100h = Incompatible with PM windowing.

00000200h = Compatible with PM windowing.

00000300h = Uses PM windowing API.

00000400h = Reserved for system use.

00000800h = Reserved for system use.

00001000h = Reserved for system use.

00002000h = Module is not loadable.

When the ‘Module is not loadable’ flag is set, it indicates that either errors
were detected at link time or that the module is being incrementally linked
and therefore can’t be loaded.

00004000h = Reserved for system use.

00038000h = Module type mask.

00000000h = Program module (EXE).

A module can not contain dynamic links to other modules that have the
‘program module’ type.

00008000h = Library module (DLL).

00010000h = Reserved for system use.

00020000h = Physical Device Driver module.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

60 Revision 10

00028000h = Virtual Device Driver module.

00080000h = MP-unsafe.

The program module is multiple-processor unsafe. It does not provide the
necessary serialization to run on more than one CPU at a time.

40000000h = Per-process Library Termination.

The setting of this bit requires the EIP Object # and EIP fields to have valid
values. If the EIP Object # and EIP fields are valid and this bit is NOT set,
then Global Library Termination is assumed. Setting this bit for an EXE file is
invalid.

MODULE # PAGES = DD Physical number of pages in module.

This field specifies the number of pages physically contained in this module. In other
words, pages containing either enumerated or iterated data, not invalid or zero-fill
pages. These pages are contained in the ‘preload pages’, ‘demand load pages’ and
‘iterated data pages’ sections of the linear EXE module. This is used to determine
the size of the other physical page based tables in the linear EXE module.

EIP OBJECT # = DD The Object number to which the Entry Address is relative.

This specifies the object to which the Entry Address is relative. This must be a
nonzero value for a program module to be correctly loaded. A zero value for a library
module indicates that no library entry routine exists. If this value is zero, then both
the Per-process Library Initialization bit and the Per-process Library Termination bit
must be clear in the module flags, or else the loader will fail to load the module.
Further, if the Per-process Library Termination bit is set, then the object to which this
field refers must be a 32-bit object (i.e., the Big/Default bit must be set in the object
flags; see below).

EIP = DD Entry Address of module.

The Entry Address is the starting address for program modules and the library
initialization and Library termination address for library modules.

ESP OBJECT # = DD The Object number to which the ESP is relative.

This specifies the object to which the starting ESP is relative. This must be a
nonzero value for a program module to be correctly loaded. This field is ignored for a
library module.

ESP = DD Starting stack address of module.

The ESP defines the starting stack pointer address for program modules. A zero
value in this field indicates that the stack pointer is to be initialized to the highest
address/offset in the object. This field is ignored for a library module.

PAGE SIZE = DD The size of one page for this system.

This field specifies the page size used by the linear EXE format and the system. For
the initial version of this linear EXE format the page size is 4Kbytes. (The 4K page
size is specified by a value of 4096 in this field.)

Revision 10 61

LX - Linear eXecutable Module Format Description

PAGE OFFSET SHIFT = DD The shift left bits for page offsets.

This field gives the number of bit positions to shift left when interpreting the Object
Page Table entries’ page offset field. This determines the alignment of the page
information in the file. For example, a value of 4 in this field would align all pages in
the Data Pages and Iterated Pages sections on 16 byte (paragraph) boundaries. A
Page Offset Shift of 9 would align all pages on a 512 byte (disk sector) basis. All
other offsets are byte aligned.

A page might not start at the next available alignment boundary. Extra padding is
acceptable between pages as long as each page starts on an alignment boundary.
For example, several alignment boundaries may be skipped in order to start a
frequently accessed page on a sector boundary.

FIXUP SECTION SIZE = DD Total size of the fixup information in bytes.

This includes the following 4 tables:

Fixup Page Table

Fixup Record Table

Import Module name Table

Import Procedure Name Table

FIXUP SECTION CHECKSUM = DD Checksum for fixup information.

This is a cryptographic checksum covering all of the fixup information. The
checksum for the fixup information is kept separate because the fixup data is not
always loaded into main memory with the ‘loader section’. If the checksum feature is
not implemented, then the linker will set these fields to zero.

LOADER SECTION SIZE = DD Size of memory resident tables.

This is the total size in bytes of the tables required to be memory resident for the
module, while the module is in use. This total size includes all tables from the Object
Table down to and including the Per-Page Checksum Table.

LOADER SECTION CHECKSUM = DD Checksum for loader section.

This is a cryptographic checksum covering all of the loader section information. If the
checksum feature is not implemented, then the linker will set these fields to zero.

OBJECT TABLE OFF = DD Object Table offset.

This offset is relative to the beginning of the linear EXE header. This offset also
points to the start of the Loader Section.

OBJECTS IN MODULE = DD Object Table Count.

This defines the number of entries in Object Table.

OBJECT PAGE TABLE OFFSET = DD Object Page Table offset

This offset is relative to the beginning of the linear EXE header.

OBJECT ITER PAGES OFF = DD Object Iterated Pages offset.

This offset is relative to the beginning of the EXE file.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

62 Revision 10

RESOURCE TABLE OFF = DD Resource Table offset.

This offset is relative to the beginning of the linear EXE header.

RESOURCE TABLE ENTRIES = DD Number of entries in Resource Table.

RESIDENT NAME TBL OFF = DD Resident Name Table offset.

This offset is relative to the beginning of the linear EXE header.

ENTRY TBL OFF = DD Entry Table offset.

This offset is relative to the beginning of the linear EXE header.

MODULE DIRECTIVES OFF = DD Module Format Directives Table offset.

This offset is relative to the beginning of the linear EXE header.

MODULE DIRECTIVES = DD Number of Module Format Directives in the Table.

This field specifies the number of entries in the Module Format Directives Table.

FIXUP PAGE TABLE OFF = DD Fixup Page Table offset.

This offset is relative to the beginning of the linear EXE header. This offset also
points to the start of the Fixup Section.

FIXUP RECORD TABLE OFF = DD Fixup Record Table Offset

This offset is relative to the beginning of the linear EXE header.

IMPORT MODULE TBL OFF = DD Import Module Name Table offset.

This offset is relative to the beginning of the linear EXE header.

IMPORT MOD ENTRIES = DD The number of entries in the Import Module Name
Table.

IMPORT PROC TBL OFF = DD Import Procedure Name Table offset.

This offset is relative to the beginning of the linear EXE header.

PER-PAGE CHECKSUM OFF = DD Per-Page Checksum Table offset.

This offset is relative to the beginning of the linear EXE header.

DATA PAGES OFFSET = DD Data Pages Offset.

This offset is relative to the beginning of the EXE file. This offset also points to the
start of the Data Section.

PRELOAD PAGES = DD Number of Preload pages for this module.

Note: OS/2 2.0 does not respect the preload of pages as specified in the
executable file for performance reasons.

NON-RES NAME TBL OFF = DD Non-Resident Name Table offset.

This offset is relative to the beginning of the EXE file.

NON-RES NAME TBL LEN = DD Number of bytes in the Non-resident name table.

Revision 10 63

LX - Linear eXecutable Module Format Description

NON-RES NAME TBL CKSM = DD Non-Resident Name Table Checksum.

This is a cryptographic checksum of the Non-Resident Name Table.

AUTO DS OBJECT # = DD The Auto Data Segment Object number.

This is the object number for the Auto Data Segment used by 16-bit modules. This
field is supported for 16-bit compatibility only and is not used by 32-bit modules.

DEBUG INFO OFF = DD Debug Information offset.

This offset is relative to the beginning of the file. This offset also points to the start of the
Debug Section.

Note: Earlier versions of this document stated that this offset was from the linear
EXE header - this is incorrect.

Note: DEBUG INFO LEN = DD Debug Information length.

The length of the debug information in bytes.

INSTANCE PRELOAD = DD Instance pages in preload section.

The number of instance data pages found in the preload section.

INSTANCE DEMAND = DD Instance pages in demand section.

The number of instance data pages found in the demand section.

HEAPSIZE = DD Heap size added to the Auto DS Object.

The heap size is the number of bytes added to the Auto Data Segment by the loader.
This field is supported for 16-bit compatibility only and is not used by 32-bit modules.

STACKSIZE = DD Stack size.

The stack size is the number of bytes specified by:

1. size of a segment with combine type stack

2. STACKSIZE in the .DEF file

3. /STACK link option

The stacksize may be zero.

Note: Stack sizes with byte 2 equal to 02 or 04 (e.g. 00020000h, 11041111h,
0f02ffffh) should be avoided for programs that will run on OS/2 2.0.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

64 Revision 10

3.3 Program (EXE) startup registers and Library entry registers

Program startup registers are defined as follows.

EIP = Starting program entry address.

ESP = Top of stack address.

CS = Code selector for base of linear address space.

DS = ES = SS = Data selector for base of linear address space.

FS = Data selector of base of Thread Information Block (TIB).

GS = 0.

EAX = EBX = 0.

ECX = EDX = 0.

ESI = EDI = 0.

EBP = 0.

[ESP+0] = Return address to routine which calls DosExit(1,EAX).

[ESP+4] = Module handle for program module.

[ESP+8] = Reserved.

[ESP+12] = Environment data object address.

[ESP+16] = Command line linear address in environment data object.

Library initialization registers are defined as follows.

EIP = Library entry address.

ESP = User program stack.

CS = Code selector for base of linear address space.

DS = ES = SS = Data selector for base of linear address space.

FS = Data selector of base of Thread Information Block (TIB).

GS = 0.

EAX = EBX = 0.

ECX = EDX = 0.

ESI = EDI = 0.

EBP = 0.

[ESP+0] = Return address to system, (EAX) = return code.

[ESP+4] = Module handle for library module.

[ESP+8] = 0 (Initialization)

Note: A 32-bit library may specify that its entry address is in a 16-bit code object. In this
case, the entry registers are the same as for entry to a library using the Segmented

Revision 10 65

LX - Linear eXecutable Module Format Description

EXE format. These are documented elsewhere. This means that a 16-bit library may
be relinked to take advantage of the benefits of the Linear EXE format (notably,
efficient paging).

Library termination registers are defined as follows.

EIP = Library entry address.

ESP = User program stack.

CS = Code selector for base of linear address space.

DS = ES = SS = Data selector for base of linear address space.

FS = Data selector of base of Thread Information Block (TIB).

GS = 0.

EAX = EBX = 0.

ECX = EDX = 0.

ESI = EDI = 0.

EBP = 0.

[ESP+0] = Return address to system.

[ESP+4] = Module handle for library module.

[ESP+8] = 1 (Termination)

Note: Library termination is not allowed for libraries with 16-bit entries.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

66 Revision 10

3.4 Object Table

The number of entries in the Object Table is given by the # Objects in Module field in the
linear EXE header. Entries in the Object Table are numbered starting from one.

Each Object Table entry has the following format:

VIRTUAL SIZE = DD Virtual memory size.

This is the size of the object that will be allocated when the object is loaded. The
object data length must be less than or equal to the total size of the pages in the
EXE file for the object. This memory size must also be large enough to contain all of
the iterated data and uninitialized data in the EXE file.

RELOC BASE ADDR = DD Relocation Base Address.

The relocation base address the object is currently relocated to. If the internal
relocation fixups for the module have been removed, this is the address the object
will be allocated at by the loader.

OBJECT FLAGS = DW Flag bits for the object.

The object flag bits have the following definitions.

0001h = Readable Object.

0002h = Writable Object.

0004h = Executable Object.

The readable, writable and executable flags provide support for all possible
protections. In systems where all of these protections are not supported, the
loader will be responsible for making the appropriate protection match for
the system.

0008h = Resource Object.

0010h = Discardable Object.

0020h = Object is Shared.

0040h = Object has Preload Pages.

0080h = Object has Invalid Pages.

0100h = Object has Zero Filled Pages.

0200h = Object is Resident (valid for VDDs, PDDs only).

0300h = Object is Resident & Contiguous (VDDs, PDDs only).

Figure 3-8: Object Table

00h VIRTUAL SIZE RELOC BASE ADDR

08h OBJECT FLAGS PAGE TABLE INDEX

10h # PAGE TABLE ENTRIES RESERVED

Revision 10 67

LX - Linear eXecutable Module Format Description

0400h = Object is Resident & ‘long-lockable’ (VDDs, PDDs only).

0800h = Object is marked as an IBM Microkernel extension.

1000h = 16:16 Alias Required (80x86 Specific).

2000h = Big/Default Bit Setting (80x86 Specific).

The ‘big/default’ bit, for data segments, controls the setting of the Big bit in
the segment descriptor. (The Big bit, or B-bit, determines whether ESP or
SP is used as the stack pointer.) For code segments, this bit controls the
setting of the Default bit in the segment descriptor. (The Default bit, or D-bit,
determines whether the default word size is 32-bits or 16-bits. It also affects
the interpretation of the instruction stream.)

4000h = Object is conforming for code (80x86 Specific).

8000h = Object I/O privilege level (80x86 Specific).

Only used for 16:16 Alias Objects.

PAGE TABLE INDEX = DD Object Page Table Index.

This specifies the number of the first object page table entry for this object. The
object page table specifies where in the EXE file a page can be found for a given
object and specifies per-page attributes.

The object table entries are ordered by logical page in the object table. In other
words the object table entries are sorted based on the object page table index value.

PAGE TABLE ENTRIES = DD # of object page table entries for this object.

Any logical pages at the end of an object that do not have an entry in the object page
table associated with them are handled as zero filled or invalid pages by the loader.

When the last logical pages of an object are not specified with an object page table
entry, they are treated as either zero filled pages or invalid pages based on the last
entry in the object page table for that object. If the last entry was neither a zero filled
or invalid page, then the additional pages are treated as zero filled pages.

RESERVED = DD Reserved for future use. Must be set to zero.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

68 Revision 10

3.5 Object Page Table

The Object page table provides information about a logical page in an object. A logical page
may be an enumerated page, a pseudo page or an iterated page. The structure of the object
page table in conjunction with the structure of the object table allows for efficient access of a
page when a page fault occurs, while still allowing the physical page data to be located in the
preload page, demand load page or iterated data page sections in the linear EXE module.
The logical page entries in the Object Page Table are numbered starting from one. The
Object Page Table is parallel to the Fixup Page Table as they are both indexed by the logical
page number.

Each Object Page Table entry has the following format:

PAGE DATA OFFSET = DD Offset to the page data in the EXE file.

This field, when bit shifted left by the PAGE OFFSET SHIFT from the module header,
specifies the offset from the beginning of the Preload Page section of the physical
page data in the EXE file that corresponds to this logical page entry. The page data
may reside in the Preload Pages, Demand Load Pages or the Iterated Data Pages
sections.

 A page might not start at the next available alignment boundary. Extra padding is
acceptable between pages as long as each page starts on an alignment boundary.
For example, several alignment boundaries may be skipped in order to start a
frequently accessed page on a sector boundary.

If the FLAGS field specifies that this is a Zero-Filled page then the PAGE DATA
OFFSET field will contain a 0.

If the logical page is specified as an iterated data page, as indicated by the FLAGS
field, then this field specifies the offset into the Iterated Data Pages section.

The logical page number (Object Page Table index), is used to index the Fixup Page
Table to find any fixups associated with the logical page.

DATA SIZE = DW Number of bytes of data for this page.

This field specifies the actual number of bytes that represent the page in the file. If
the PAGE SIZE field from the module header is greater than the value of this field
and the FLAGS field indicates a Legal Physical Page, the remaining bytes are to be
filled with zeros. If the FLAGS field indicates an Iterated Data Page, the iterated data
records will completely fill out the remainder.

FLAGS = DW Attributes specifying characteristics of this logical page.

The bit definitions for this word field follow,

00h = Legal Physical Page in the module (Offset from Preload Page Section).

01h = Iterated Data Page (Offset from Iterated Data Pages Section).

Figure 3-9: Object Page Table Entry

63 32 31 16 15 0

00h PAGE DATA OFFSET DATA SIZE FLAGS

Revision 10 69

LX - Linear eXecutable Module Format Description

02h = Invalid Page (zero).

03h = Zero Filled Page (zero).

04h = Range of Pages.

05h = Compressed Page (Offset from Preload Pages Section).

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

70 Revision 10

3.6 Resource Table

The resource table is an array of resource table entries. Each resource table entry contains a
type ID and name ID. These entries are used to locate resource objects contained in the
Object table. The number of entries in the resource table is defined by the Resource Table
Count located in the linear EXE header. More than one resource may be contained within a
single object. Resource table entries are in a sorted order, (ascending, by Resource Name
ID within the Resource Type ID). This allows the DosGetResource API function to use a
binary search when looking up a resource in a 32-bit module instead of the linear search
being used in the current 16-bit module.

Each resource entry has the following format:

TYPE ID = DW Resource type ID.

The type of resources are:

01h = RT_POINTER = mouse pointer shape

02h = RT_BITMAP = bitmap

03h = RT_MENU = menu template

04h = RT_DIALOG = dialog template

05h = RT_STRING = string tables

06h = RT_FONTDIR = font directory

07h = RT_FONT = font

08h = RT_ACCELTABLE = accelerator tables

09h = RT_RCDATA = binary data

0Ah = RT_MESSAGE = error msg tables

0Bh = RT_DLGINCLUDE = dialog include file name

0Ch = RT_VKEYTBL = key to vkey tables

0Dh = RT_KEYTBL = key to UGL tables

0Eh = RT_CHARTBL = glyph to character tables

0Fh = RT_DISPLAYINFO = screen display information

10h = RT_FKASHORT = function key area short form

11h = RT_FKALONG = function key area long form

12h = RT_HELPTABLE = Help table for Cary Help manager

Figure 3-10: Resource Table

00h TYPE ID NAME ID

04h RESOURCE SIZE

08h OBJECT OFFSET

Revision 10 71

LX - Linear eXecutable Module Format Description

13h = RT_HELPSUBTABLE = Help subtable for Cary Help manager

14h = RT_FDDIR = DBCS uniq/font driver directory

15h = RT_FD = DBCS uniq/font driver

NAME ID = DW An ID used as a name for the resource when referred to.

RESOURCE SIZE = DD The number of bytes the resource consists of.

OBJECT = DW The number of the object which contains the resource.

OFFSET = DD The offset within the specified object where the resource begins.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

72 Revision 10

3.7 Resident or Non-resident Name Table Entry

The resident and non-resident name tables define the ASCII names and ordinal numbers for
exported entries in the module. In addition the first entry in the resident name table contains
the module name. These tables are used to translate a procedure name string into an ordinal
number by searching for a matching name string. The ordinal number is used to locate the
entry point information in the entry table.

The resident name table is kept resident in system memory while the module is loaded. It is
intended to contain the exported entry point names that are frequently dynamically linked to
by name. Non-resident names are not kept in memory and are read from the EXE file when a
dynamic link reference is made. Exported entry point names that are infrequently
dynamically linked to by name or are commonly referenced by ordinal number should be
placed in the non-resident name table. The trade off made for references by name is
performance vs. memory usage.

Import references by name require these tables to be searched to obtain the entry point
ordinal number. Import references by ordinal number provide the fastest lookup since the
search of these tables is not required.

Installable File Systems, Physical Device Drivers, and Virtual Device Drivers are closed after
the file is loaded. Any reference to the non-resident name table after this time will fail.

The strings are CASE SENSITIVE and are NOT NULL TERMINATED.

Each name table entry has the following format:

LEN = DB String Length.

This defines the length of the string in bytes. A zero length indicates there are no
more entries in table. The length of each ascii name string is limited to 255
characters.

ASCII STRING = DB ASCII String.

This is a variable length string with it’s length defined in bytes by the LEN field. The
string is case sensitive and is not null terminated.

ORDINAL # = DW Ordinal number.

The ordinal number in an ordered index into the entry table for this entry point.

Figure 3-11: Resident or Non-resident Name Table Entry

00h LEN ASCII STRING . . . ORDINAL

Revision 10 73

LX - Linear eXecutable Module Format Description

3.8 Entry Table

The entry table contains object and offset information that is used to resolve fixup references
to the entry points within this module. Not all entry points in the entry table will be exported,
some entry points will only be used within the module. An ordinal number is used to index
into the entry table. The entry table entries are numbered starting from one.

The list of entries are compressed into ‘bundles’, where possible. The entries within each
bundle are all the same size. A bundle starts with a count field which indicates the number of
entries in the bundle. The count is followed by a type field which identifies the bundle format.
This provides both a means for saving space as well as a mechanism for extending the
bundle types.

The type field allows the definition of 256 bundle types. The following bundle types will
initially be defined:

Unused Entry.

16-bit Entry.

286 Call Gate Entry.

32-bit Entry.

Forwarder Entry.

The bundled entry table has the following format:

CNT = DB Number of entries.

This is the number of entries in this bundle.

A zero value for the number of entries identifies the end of the entry table. There is
no further bundle information when the number of entries is zero. In other words the
entry table is terminated by a single zero byte.

TYPE = DB Bundle type.

This defines the bundle type which determines the contents of the BUNDLE INFO.

The follow types are defined:

00h = Unused Entry.

01h = 16-bit Entry.

02h = 286 Call Gate Entry.

03h = 32-bit Entry.

04h = Forwarder Entry.

80h = Parameter Typing Information Present.

Figure 3-12: Entry Table

00h CNT TYPE BUNDLE INFO . . .

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

74 Revision 10

This bit signifies that additional information is contained in the linear EXE
module and will be used in the future for parameter type checking.

The following is the format for each bundle type:

CNT = DB Number of entries.

This is the number of unused entries to skip.

TYPE = DB 0 (Unused Entry)

3.8.1 16-bit Entry

CNT = DB Number of entries.

This is the number of 16-bit entries in this bundle. The flags and offset value are
repeated this number of times.

TYPE = DB 1 (16-bit Entry)

OBJECT = DW Object number.

This is the object number for the entries in this bundle.

FLAGS = DB Entry flags.

These are the flags for this entry point. They have the following definition.

01h = Exported entry flag.

F8h = Parameter word count mask.

OFFSET = DW Offset in object.

This is the offset in the object for the entry point defined at this ordinal number.

3.8.2 286 Call Gate Entry

CNT = DB Number of entries.

00h CNT TYPE

00h CNT TYPE OBJECT

04h FLAGS OFFSET

07h

00h CNT TYPE OBJECT

04h FLAGS OFFSET CALLGATE

09h

Revision 10 75

LX - Linear eXecutable Module Format Description

This is the number of 286 call gate entries in this bundle. The flags, callgate, and
offset value are repeated this number of times.

TYPE = DB 2 (286 Call Gate Entry)

The 286 Call Gate Entry Point type is needed by the loader only if ring 2 segments
are to be supported. 286 Call Gate entries contain 2 extra bytes which are used by
the loader to store an LDT callgate selector value.

OBJECT = DW Object number.

This is the object number for the entries in this bundle.

FLAGS = DB Entry flags.

These are the flags for this entry point. They have the following definition.

01h = Exported entry flag.

F8h = Parameter word count mask.

OFFSET = DW Offset in object.

This is the offset in the object for the entry point defined at this ordinal number.

CALLGATE = DW Callgate selector.

The callgate selector is a reserved field used by the loader to store a call gate
selector value for references to ring 2 entry points. When a ring 3 reference to a ring
2 entry point is made, the callgate selector with a zero offset is place in the
relocation fixup address. The segment number and offset in segment is placed in the
LDT callgate.

3.8.3 32-bit Entry

CNT = DB Number of entries.

This is the number of 32-bit entries in this bundle. The flags and offset value are
repeated this number of times.

TYPE = DB 3 (32-bit Entry)

The 32-bit Entry type will only be defined by the linker when the offset in the object
can not be specified by a 16-bit offset.

OBJECT = DW Object number.

This is the object number for the entries in this bundle.

FLAGS = DB Entry flags.

These are the flags for this entry point. They have the following definition.

01h = Exported entry flag.

00h CNT TYPE OBJECT

04h FLAGS OFFSET

09h

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

76 Revision 10

F8h = Parameter dword count mask.

OFFSET = DD Offset in object.

This is the offset in the object for the entry point defined at this ordinal number.

3.8.4 Forwarder Entry

CNT = DB Number of entries.

This is the number of forwarder entries in this bundle. The FLAGS, MOD ORD#, and
OFFSET/ORDNUM values are repeated this number of times.

TYPE = DB 4 (Forwarder Entry)

RESERVED = DW 0

This field is reserved for future use.

FLAGS = DB Forwarder flags.

These are the flags for this entry point. They have the following definition.

01h = Import by ordinal.

F7h = Reserved for future use; should be zero.

MOD ORD# = DW Module Ordinal Number

This is the index into the Import Module Name Table for this forwarder.

OFFSET / ORDNUM = DD Procedure Name Offset or Import Ordinal Number

If the FLAGS field indicates import by ordinal, then this field is the ordinal number
into the Entry Table of the target module, otherwise this field is the offset into the
Procedure Names Table of the target module.

A Forwarder entry (type = 4) is an entry point whose value is an imported reference.
When a load time fixup occurs whose target is a forwarder, the loader obtains the
address imported by the forwarder and uses that imported address to resolve the fixup.

A forwarder may refer to an entry point in another module which is itself a forwarder, so
there can be a chain of forwarders. The loader will traverse the chain until it finds a non-
forwarded entry point which terminates the chain, and use this to resolve the original
fixup. Circular chains are detected by the loader and result in a load time error. A
maximum of 1024 forwarders is allowed in a chain; more than this results in a load time
error.

Forwarders are useful for merging and recombining API calls into different sets of
libraries, while maintaining compatibility with applications. For example, if one wanted to
combine MONCALLS, MOUCALLS, and VIOCALLS into a single libraries, one could
provide entry points for the three libraries that are forwarders pointing to the common
implementation.

00h CNT TYPE RESERVED

04h FLAGS MOD ORD# OFFSET / ORDNUM

09h

Revision 10 77

LX - Linear eXecutable Module Format Description

3.9 Module Format Directives Table

The Module Format Directives Table is an optional table that allows additional options to be
specified. It also allows for the extension of the linear EXE format by allowing additional
tables of information to be added to the linear EXE module without affecting the format of the
linear EXE header. Likewise, module format directives provide a place in the linear EXE
module for ‘temporary tables’ of information, such as incremental linking information and
statistic information gathered on the module. When there are no module format directives for
a linear EXE module, the fields in the linear EXE header referencing the module format
directives table are zero.

Each Module Format Directive Table entry has the following format:

DIRECT # = DW Directive number.

The directive number specifies the type of directive defined. This can be used to
determine the format of the information in the directive data. The following directive
numbers have been defined:

8000h = Resident Flag Mask.

Directive numbers with this bit set indicate that the directive data is in the resident
area and will be kept resident in memory when the module is loaded.

8001h = Verify Record Directive. (Verify record is a resident table.)

0002h = Language Information Directive. (This is a non-resident table.)

0003h = Co-Processor Required Support Table.

0004h = Thread State Initialization Directive.

0005h = C Set ++ Browse Information. Additional directives can be added as
needed in the future, as long as they do not overlap previously defined directive
numbers.

DATA LEN = DW Directive data length.

This specifies the length in byte of the directive data for this directive number.

DIRECTIVE OFFSET = DD Directive data offset.

This is the offset to the directive data for this directive number. It is relative to
beginning of linear EXE header for a resident table, and relative to the beginning of
the EXE file for non-resident tables.

Figure 3-13: Module Format Directive Table

00h DIRECT # DATA LEN DATA OFFSET

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

78 Revision 10

3.10 Verify Record Directive Table

The Verify Record Directive Table is an optional table. It maintains a record of the pages in
the EXE file that have been fixed up and written back to the original linear EXE module,
along with the module dependencies used to perform these fixups. This table provides an
efficient means for verifying the virtual addresses required for the fixed up pages when the
module is loaded.

Each Verify Record entry has the following format:

OF ENTRY = DW Number of module dependencies.

This field specifies how many entries there are in the verify record directive table.
This is equal to the number of modules referenced by this module.

MOD ORD # = DW Ordinal index into the Import Module Name Table.

This value is an ordered index in to the Import Module Name Table for the
referenced module.

VERSION = DW Module Version.

This is the version of the referenced module that the fixups were originally
performed. This is used to insure the same version of the referenced module is
loaded that was fixed up in this module and therefore the fixups are still correct. This
requires the version number in a module to be incremented anytime the entry point
offsets change.

MOD # OBJ = DW Module # of Object Entries.

This field is used to identify the number of object verify entries that follow for the
referenced module.

OBJECT # = DW Object # in Module.

This field specifies the object number in the referenced module that is being verified.

BASE ADDR = DW Object load base address.

This is the address that the object was loaded at when the fixups were performed.

VIRTUAL = DW Object virtual address size.

This field specifies the total amount of virtual memory required for this object.

Figure 3-14: Verify Record Table

00h # OF ENTRY

02h MOD ORD # VERSION MOD # OBJ

08h OBJECT # BASE ADDR VIRTUAL

0Eh

Revision 10 79

LX - Linear eXecutable Module Format Description

3.11 Per-Page Checksum

The Per-Page Checksum table provides space for a cryptographic checksum for each
physical page in the EXE file.

The checksum table is arranged such that the first entry in the table corresponds to the first
logical page of code/data in the EXE file (usually a preload page) and the last entry
corresponds to the last logical page in the EXE file (usually a iterated data page).

CHECKSUM = DD Cryptographic checksum.

Figure 3-15: Per-Page Checksum

Logical Page #1 CHECKSUM

Logical Page #2 CHECKSUM

. . .

Logical Page #n CHECKSUM

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

80 Revision 10

3.12 Fixup Page Table

The Fixup Page Table provides a simple mapping of a logical page number to an offset into
the Fixup Record Table for that page.

This table is parallel to the Object Page Table, except that there is one additional entry in this
table to indicate the end of the Fixup Record Table.

The format of each entry is:

OFFSET FOR PAGE # = DD Offset for fixup record for this page.

This field specifies the offset, from the beginning of the fixup record table, to the first
fixup record for this page.

OFF TO END OF FIXUP REC = DD Offset to the end of the fixup records.

This field specifies the offset following the last fixup record in the fixup record table.
This is the last entry in the fixup page table.

The fixup records are kept in order by logical page in the fixup record table. This
allows the end of each page’s fixup records is defined by the offset for the next
logical page’s fixup records. This last entry provides support of this mechanism for
the last page in the fixup page table.

Figure 3-16: Fixup Page Table

Logical Page #1 OFFSET FOR PAGE #1

Logical Page #2 OFFSET FOR PAGE #2

. . .

Logical Page #n OFFSET FOR PAGE #n

OFF TO END OF FIXUP REC This is equal to: Offset for
page #n + Size of fixups

for page #n

Revision 10 81

LX - Linear eXecutable Module Format Description

3.13 Fixup Record Table

The Fixup Record Table contains entries for all fixups in the linear EXE module. The fixup
records for a logical page are grouped together and kept in sorted order by logical page
number. The fixups for each page are further sorted such that all external fixups and internal
selector/pointer fixups come before internal non-selector/non-pointer fixups. This allows the
loader to ignore internal fixups if the loader is able to load all objects at the addresses
specified in the object table.

Each relocation record has the following format:

SRC = DB Source type.

The source type specifies the size and type of the fixup to be performed on the fixup
source. The source type is defined as follows:

0Fh = Source mask.

00h = Byte fixup (8-bits).

01h = (undefined).

02h = 16-bit Selector fixup (16-bits).

03h = 16:16 Pointer fixup (32-bits).

04h = (undefined).

05h = 16-bit Offset fixup (16-bits).

06h = 16:32 Pointer fixup (48-bits).

07h = 32-bit Offset fixup (32-bits).

08h = 32-bit Self-relative offset fixup (32-bits).

10h = Fixup to Alias Flag.

When the ‘Fixup to Alias’ Flag is set, the source fixup refers to the 16:16
alias for the object. This is only valid for source types of 2, 3, and 6. For
fixups such as this, the linker and loader will be required to perform
additional checks such as ensuring that the target offset for this fixup is less
than 64K.

Figure 3-17: Fixup Record Table

00h SRC FLAGS SRCOFF/CNT1

03h/04h TARGET DATA1

SRCOFF12 . . . SRCOFFn2

1These fields are variable size.
2T h e s e f ie ld s a re o p tio n a l.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

82 Revision 10

20h = Source List Flag.

When the ‘Source List’ Flag is set, the SRCOFF field is compressed to a
byte and contains the number of source offsets, and a list of source offsets
follows the end of fixup record (after the optional additive value).

FLAGS = DB Target Flags.

The target flags specify how the target information is interpreted. The target flags are
defined as follows:

03h = Fixup target type mask.

00h = Internal reference.

01h = Imported reference by ordinal.

02h = Imported reference by name.

03h = Internal reference via entry table.

04h = Additive Fixup Flag.

When set, an additive value trails the fixup record (before the optional
source offset list).

08h = Internal Chaining Fixup Flag.

When set, this bit indicates that this fixup record is the beginning of a chain
of fixups. The remaining fixups in the chain are contained within the page
rather than as additional entries in the fixup record table. See § 3.13.5,
“Internal Chaining Fixups”, on page 86 for additional details on this fixup
type.

Setting this bit is only valid for fixups of source type 07h (32-bit Offset) and
target types 00h and 03h (Internal references). This bit is only valid if the
Source List Flag is not set.

10h = 32-bit Target Offset Flag.

When set, the target offset is 32-bits, otherwise it is 16-bits.

20h = 32-bit Additive Fixup Flag.

When set, the additive value is 32-bits, otherwise it is 16-bits.

40h = 16-bit Object Number/Module Ordinal Flag.

When set, the object number or module ordinal number is 16-bits, otherwise
it is 8-bits.

80h = 8-bit Ordinal Flag.

When set, the ordinal number is 8-bits, otherwise it is 16-bits.

SRCOFF = DW/CNT = DB Source offset or source offset list count.

This field contains either an offset or a count depending on the Source List Flag. If
the Source List Flag is set, a list of source offsets follows the additive field and this
field contains the count of the entries in the source offset list. Otherwise, this is the

Revision 10 83

LX - Linear eXecutable Module Format Description

single source offset for the fixup. Source offsets are relative to the beginning of the
page where the fixup is to be made.

Note: For fixups that cross page boundaries, a separate fixup record is specified
for each page. An offset is still used for the 2nd page but it now becomes a
negative offset since the fixup originated on the preceding page. (For
example, if only the last one byte of a 32-bit address is on the page to be
fixed up, then the offset would have a value of -3.)

TARGET DATA = Target data for fixup.

The format of the TARGET DATA is dependent upon target flags.

SRCOFF1 - SRCOFFn = DW[] Source offset list.

This list is present if the Source List Flag is set in the Target Flags field. The number
of entries in the source offset list is defined in the SRCOFF/CNT field. The source
offsets are relative to the beginning of the page where the fixups are to be made.

3.13.1 Internal Fixup Record

OBJECT = D[B|W] Target object number.

This field is an index into the current module’s Object Table to specify the target
Object. It is a Byte value when the ‘16-bit Object Number/Module Ordinal Flag’ bit in
the target flags field is clear and a Word value when the bit is set.

TRGOFF = D[W|D] Target offset.

This field is an offset into the specified target Object. It is not present when the
Source Type specifies a 16-bit Selector fixup. It is a Word value when the ‘32-bit
Target Offset Flag’ bit in the target flags field is clear and a Dword value when the bit
is set.

Figure 3-18: Internal Fixup Record

00h SRC FLAGS SRCOFF/CNT1

03h/04h OBJECT1 TRGOFF1,2

SRCOFF12 . . . SRCOFFn2

1These fields are variable size.
2T h e s e f ie ld s a re o p tio n a l.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

84 Revision 10

3.13.2 Import by Ordinal Fixup Record

MOD ORD # = D[B|W] Ordinal index into the Import Module Name Table.

This value is an ordered index in to the Import Module Name Table for the module
containing the procedure entry point. It is a Byte value when the ‘16-bit Object
Number/Module Ordinal’ Flag bit in the target flags field is clear and a Word value
when the bit is set. The loader creates a table of pointers with each pointer in the
table corresponds to the modules named in the Import Module Name Table. This
value is used by the loader to index into this table created by the loader to locate the
referenced module.

IMPORT ORD = D[B|W|D] Imported ordinal number.

This is the imported procedure’s ordinal number. It is a Byte value when the ‘8-bit
Ordinal’ bit in the target flags field is set. Otherwise it is a Word value when the ‘32-
bit Target Offset Flag’ bit in the target flags field is clear and a Dword value when the
bit is set.

ADDITIVE = D[W|D] Additive fixup value.

This field exists in the fixup record only when the ‘Additive Fixup Flag’ bit in the
target flags field is set. When the ‘Additive Fixup Flag’ is clear the fixup record does
not contain this field and is immediately followed by the next fixup record (or by the
source offset list for this fixup record).

This value is added to the address derived from the target entry point. This field is a
Word value when the ‘32-bit Additive Flag’ bit in the target flags field is clear and a
Dword value when the bit is set.

Figure 3-19: Import by Ordinal Fixup Record

00h SRC FLAGS SRCOFF/CNT1

03h/04h MOD ORD#1 IMPORT ORD1 ADDITIVE1,2

SRCOFF12 . . . SRCOFFn2

1These fields are variable size.
2T h e se f ie ld s a re o p tio n a l.

Revision 10 85

LX - Linear eXecutable Module Format Description

3.13.3 Import by Name Fixup Record

MOD ORD # = D[B|W] Ordinal index into the Import Module Name Table.

This value is an ordered index in to the Import Module Name Table for the module
containing the procedure entry point. It is a Byte value when the ‘16-bit Object
Number/Module Ordinal’ Flag bit in the target flags field is clear and a Word value
when the bit is set. The loader creates a table of pointers with each pointer in the
table corresponds to the modules named in the Import Module Name Table. This
value is used by the loader to index into this table created by the loader to locate the
referenced module.

PROCEDURE NAME OFFSET = D[W|D] Offset into the Import Procedure Name Table.

This field is an offset into the Import Procedure Name Table. It is a Word value when
the ‘32-bit Target Offset Flag’ bit in the target flags field is clear and a Dword value
when the bit is set.

ADDITIVE = D[W|D] Additive fixup value.

This field exists in the fixup record only when the ‘Additive Fixup Flag’ bit in the
target flags field is set. When the ‘Additive Fixup Flag’ is clear the fixup record does
not contain this field and is immediately followed by the next fixup record (or by the
source offset list for this fixup record).

This value is added to the address derived from the target entry point. This field is a
Word value when the ‘32-bit Additive Flag’ bit in the target flags field is clear and a
Dword value when the bit is set.

3.13.4 Internal Entry Table Fixup Record

ENTRY # = D[B|W] Ordinal index into the Entry Table.

Figure 3-20: Import by Name Fixup Record

00h SRC FLAGS SRCOFF/CNT1

03h/04h MOD ORD#1 PROCEDURE NAME OFFSET1 ADDITIVE1,2

SRCOFF12 . . . SRCOFFn2

1These fields are variable size.
2T h e se f ie ld s a re o p tio n a l.

Figure 3-21: Internal Entry Table Fixup Record

00h SRC FLAGS SRCOFF/CNT1

03h/04h ORD #1 ADDITIVE1,2

SRCOFF12 . . . SRCOFFn2

1These fields are variable size.
2T h e s e f ie ld s a re o p tio n a l.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

86 Revision 10

This field is an index into the current module’s Entry Table to specify the target
Object and offset. It is a Byte value when the ‘16-bit Object Number/Module Ordinal’
Flag bit in the target flags field is clear and a Word value when the bit is set.

ADDITIVE = D[W|D] Additive fixup value.

This field exists in the fixup record only when the ‘Additive Fixup Flag’ bit in the
target flags field is set. When the ‘Additive Fixup Flag’ is clear the fixup record does
not contain this field and is immediately followed by the next fixup record (or by the
source offset list for this fixup record).

This value is added to the address derived from the target entry point. This field is a
Word value when the ‘32-bit Additive Flag’ bit in the target flags field is clear and a
Dword value when the bit is set.

3.13.5 Internal Chaining Fixups

Internal chaining fixups are 32-bit offset fixups (source type 07h) to internal references
(target types 00h and 03h) where the first fixup in the chain is a record in the Fixup Record
Table and the remaining fixups are located in the page referenced by the first fixup rather
than as records in the Fixup Record Table. The chain is a linked-list with each fixup pointing
to the next fixup in the chain until the end of the chain is reached. All fixups in the chain must
fixup source offsets within the same page. All fixups in the chain must reference targets
within the same memory object. All target references within a chain are also restricted to be
within a 1 MB virtual memory range. Of course multiple chains can be used to meet the
restrictions on an individual chain.

The first fixup in the chain is contained in a record in the Fixup Record Table with the
‘Internal Chaining Fixup Flag’ bit in the target flags field set. This fixup is otherwise normal
except that the 32-bit source location contains information about this fixup and the next fixup
in the chain.

Before applying an internal chaining fixup, the 32-bit value at the source location should be
read. The first 12-bits of the value contain the source offset, within the page, for the next
fixup in the chain and the remaining 20-bits contain the target offset of the current fixup.

SRCOFF = Source offset.

This field contains the source offset, from the start of the page, to the next fixup in
the chain. The final fixup in the chain is identified by the value of 0xFFF indicating no
further fixups in the chain.

TRGOFF = Target offset.

This field contains the target offset from a base target address for the current fixup.
A base target address for the all the fixups in the chain is computed by subtracting
the TRGOFF value, found in the source location of the first fixup, from the target
address computed for the first fixup, using the normal technique for the record in the

Figure 3-22: Internal Chaining Fixup Source Location

< - - - 12 bits - - > < - - - - - - - 20 bits- - - - - - >

SRCOFF TRGOFF

Revision 10 87

LX - Linear eXecutable Module Format Description

Fixup Record Table. This base target address is then added to each TRGOFF in the
fixup chain to compute the proper target address for the individual fixup.

Since TRGOFF is limited to 20-bits, there is a 1 MB virtual memory range for the
targets of all the fixups in a chain. The range is base target address to base target
address + (1MB - 1).

The following pseudocode illustrates how the chain of fixups work.

Figure 3-23: Internal Chaining Fixup Pseudocode

source_page = address of source page containing fixups
source_offset = offset in page of fixup (from Fixup Record Table record)
target_address = address of target reference (from Fixup Record Table record)

if (fixup is an Internal Chaining Fixup)
{

fixupinfo = *(source_page + source_offset)
base_target_address = target_address - (fixupinfo & 0xFFFFF)
do
{

fixupinfo = *(source_page + source_offset)
*(source_page + source_offset) =

base_target_address + (fixupinfo & 0xFFFFF)
source_offset = (fixupinfo >> 20) & 0xFFF)

}
while (source_offset != 0xFFF)

}
else
{

*(source_page + source_offset) = target_address
}

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

88 Revision 10

3.14 Import Module Name Table

The import module name table defines the module name strings imported through dynamic
link references. These strings are referenced through the imported relocation fixups.

To determine the length of the import module name table subtract the import module name
table offset from the import procedure name table offset. These values are located in the
linear EXE header. The end of the import module name table is not terminated by a special
character, it is followed directly by the import procedure name table.

The strings are CASE SENSITIVE and NOT NULL TERMINATED.

Each name table entry has the following format:

LEN = DB String Length.

This defines the length of the string in bytes. The length of each ascii name string is
limited to 255 characters.

ASCII STRING = DB ASCII String.

This is a variable length string with it’s length defined in bytes by the LEN field. The
string is case sensitive and is not null terminated.

Figure 3-24: Import Module Name Table

00h LEN ASCII STRING ...

Revision 10 89

LX - Linear eXecutable Module Format Description

3.15 Import Procedure Name Table

The import procedure name table defines the procedure name strings imported by this
module through dynamic link references. These strings are referenced through the imported
relocation fixups.

To determine the length of the import procedure name table add the fixup section size to the
fixup page table offset, this computes the offset to the end of the fixup section, then subtract
the import procedure name table offset. These values are located in the linear EXE header.
The import procedure name table is followed by the data pages section. Since the data
pages section is aligned on a ‘page size’ boundary, padded space may exist between the
last import name string and the first page in the data pages section. If this padded space
exists it will be zero filled.

The strings are CASE SENSITIVE and NOT NULL TERMINATED.

Each name table entry has the following format:

LEN = DB String Length.

This defines the length of the string in bytes. The length of each ascii name string is
limited to 255 characters.

The high bit in the LEN field (bit 7) is defined as an Overload bit. This bit signifies
that additional information is contained in the linear EXE module and will be used in
the future for parameter type checking.

ASCII STRING = DB ASCII String.

This is a variable length string with it’s length defined in bytes by the LEN field. The
string is case sensitive and is not null terminated.

Note: The first entry in the import procedure name table must be a null entry. That is, the
LEN field should be zero followed an empty ASCII STRING (no bytes).

Figure 3-25: Import Procedure Name Table

00h LEN ASCII STRING ...

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

90 Revision 10

3.16 Preload Pages

The Preload Pages section is an optional section in the linear EXE module that coalesces a
‘preload page set’ into a contiguous section. The preload page set can be defined as the set
of first used pages in the module. The preload page set can be specified by the application
developer or can be derived by a tool that analyzes the programs memory usage while it is
running. By grouping the preload page set together, the preload pages can be read from the
linear EXE module with one disk read.

 The structure of the preload pages is no different than if they were demand loaded. Their
sizes are determined by the Object Page Table entries that correspond. If the specified size
is less than the PAGE SIZE field given in the linear EXE module header the remainder of the
page is filled with zeros when loaded.

All pages begin on a PAGE OFFSET SHIFT boundary from the base of the preload page
section, as specified in the linear EXE header. The pages are ordered by logical page
number within this section.

Note: OS/2 2.x does not respect the preload of pages as specified in the executable file for
performance reasons.

Revision 10 91

LX - Linear eXecutable Module Format Description

3.17 Demand Load Pages

The Demand Loaded Pages section contains all the non-iterated pages for a linear EXE
module that are not preloaded. When required, the whole page is loaded into memory from
the module. The characteristics of each of these pages is specified in the Object Page Table.
Every page begins on a PAGE OFFSET SHIFT boundary aligned offset from the demand
loaded pages base specified in the linear EXE header. Their sizes are determined by the
Object Page Table entries that correspond. If the specified size is less than the PAGE SIZE
field given in the linear EXE module header the remainder of the page is filled with zeros
when loaded. The pages are ordered by logical page number within this section.

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

92 Revision 10

3.18 Iterated Data Pages

The Iterated Data Pages section contains all the pages for a linear EXE module that are
iterated. When required, the set of iteration records are loaded into memory from the module
and expanded to reconstitute the page. Every set of iteration records begins on a PAGE
OFFSET SHIFT offset from the OBJECT ITER PAGES OFF specified in the linear EXE
header. Their sizes are determined by the Object Page Table entries that correspond. The
pages are ordered by logical page number within this section.

This record structure is used to describe the iterated data for an object on a per-page basis.

#ITERATIONS = DW Number of iterations.

This specifies the number of times that the data is replicated.

DATA LENGTH = DW The size of the data pattern in bytes.

This specifies the number of bytes of data of which the pattern consists. The
maximum size is one half of the PAGE SIZE (given in the module header). If a
pattern exceeds this value then the data page will not be condensed into iterated
data.

DATA = DB * DATA LENGTH The Data pattern to be replicated.

The next iteration record will immediately follow the last byte of the pattern. The
offset of the next iteration record is easily calculated from the offset of this record by
adding the DATA LENGTH field and the sizes of the #ITERATIONS and DATA
LENGTH fields.

Figure 3-26: Object Iterated Data Record (Iteration Record)

00h #ITERATIONS DATA LENGTH

04h DATA BYTES

Revision 10 93

LX - Linear eXecutable Module Format Description

3.19 Debug Information

The debug information is defined by the debugger and is not controlled by the linear EXE
format or linker. The only data defined by the linear EXE format relative to the debug
information is it’s offset in the EXE file and length in bytes as defined in the linear EXE
header.

To support multiple debuggers the first word of the debug information is a type field which
determines the format of the debug information.

TYPE = DB DUP 4 Format type.

This defines the type of debugger data that exists in the remainder of the debug
information. The signature consists of a string of four (4) ASCII characters: “NB0”
followed by the ASCII representation for ‘n’. The values for ‘n’ are defined as follows.

These format types are defined.

00h = 32-bit CodeView debugger format.

01h = AIX debugger format.

02h = 16-bit CodeView debugger format.

04h = 32-bit OS/2 PM debugger (IBM) format.

DEBUGGER DATA = Debugger specific data.

The format of the debugger data is defined by the debugger that is being used.

The values defined for the type field are not enforced by the system. It is the
responsibility of the linker or debugging tools to follow the convention for the type
field that is defined here.

Figure 3-27: Debug Information

00h 01h 02h 03h 04h

‘N’ ‘B’ ‘0’ n DEBUGGER DATA

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

94 Revision 10

Revision 10 95

IBM OS/2 16/32-bit Object Module Format (OMF) and Linear eXecutable Module Format (LX)

End of Document

This is the last page of the document.

